scholarly journals The whole brain architecture approach: Accelerating the development of artificial general intelligence by referring to the brain

2021 ◽  
Author(s):  
Hiroshi Yamakawa
2020 ◽  
Vol 11 (1) ◽  
pp. 1-37
Author(s):  
Claes Strannegård ◽  
Wen Xu ◽  
Niklas Engsner ◽  
John A. Endler

AbstractAlthough animals such as spiders, fish, and birds have very different anatomies, the basic mechanisms that govern their perception, decision-making, learning, reproduction, and death have striking similarities. These mechanisms have apparently allowed the development of general intelligence in nature. This led us to the idea of approaching artificial general intelligence (AGI) by constructing a generic artificial animal (animat) with a configurable body and fixed mechanisms of perception, decision-making, learning, reproduction, and death. One instance of this generic animat could be an artificial spider, another an artificial fish, and a third an artificial bird. The goal of all decision-making in this model is to maintain homeostasis. Thus actions are selected that might promote survival and reproduction to varying degrees. All decision-making is based on knowledge that is stored in network structures. Each animat has two such network structures: a genotype and a phenotype. The genotype models the initial nervous system that is encoded in the genome (“the brain at birth”), while the phenotype represents the nervous system in its present form (“the brain at present”). Initially the phenotype and the genotype coincide, but then the phenotype keeps developing as a result of learning, while the genotype essentially remains unchanged. The model is extended to ecosystems populated by animats that develop continuously according to fixed mechanisms for sexual or asexual reproduction, and death. Several examples of simple ecosystems are given. We show that our generic animat model possesses general intelligence in a primitive form. In fact, it can learn simple forms of locomotion, navigation, foraging, language, and arithmetic.


Author(s):  
Luca M. Possati

AbstractThe core hypothesis of this paper is that neuropsychoanalysis provides a new paradigm for artificial general intelligence (AGI). The AGI agenda could be greatly advanced if it were grounded in affective neuroscience and neuropsychoanalysis rather than cognitive science. Research in AGI has so far remained too cortical-centric; that is, it has privileged the activities of the cerebral cortex, the outermost part of our brain, and the main cognitive functions. Neuropsychoanalysis and affective neuroscience, on the other hand, affirm the centrality of emotions and affects—i.e., the subcortical area that represents the deepest and most ancient part of the brain in psychic life. The aim of this paper is to define some general design principles of an AGI system based on the brain/mind relationship model formulated in the works of Mark Solms and Jaak Panksepp. In particular, the paper analyzes Panksepp’s seven effective systems and how they can be embedded into an AGI system through Judea Pearl’s causal analysis. In the conclusions, the author explains why building a sub-cortical AGI is the best way to solve the problem of AI control. This paper is intended to be an original contribution to the discussion on AGI by elaborating positive arguments in favor of it.


Primates ◽  
2021 ◽  
Author(s):  
Rie Asano

AbstractA central property of human language is its hierarchical structure. Humans can flexibly combine elements to build a hierarchical structure expressing rich semantics. A hierarchical structure is also considered as playing a key role in many other human cognitive domains. In music, auditory-motor events are combined into hierarchical pitch and/or rhythm structure expressing affect. How did such a hierarchical structure building capacity evolve? This paper investigates this question from a bottom-up perspective based on a set of action-related components as a shared basis underlying cognitive capacities of nonhuman primates and humans. Especially, I argue that the evolution of hierarchical structure building capacity for language and music is tractable for comparative evolutionary study once we focus on the gradual elaboration of shared brain architecture: the cortico-basal ganglia-thalamocortical circuits for hierarchical control of goal-directed action and the dorsal pathways for hierarchical internal models. I suggest that this gradual elaboration of the action-related brain architecture in the context of vocal control and tool-making went hand in hand with amplification of working memory, and made the brain ready for hierarchical structure building in language and music.


2021 ◽  
pp. 1-6
Author(s):  
Scott McLean ◽  
Gemma J. M. Read ◽  
Jason Thompson ◽  
P. A. Hancock ◽  
Paul M. Salmon

Sign in / Sign up

Export Citation Format

Share Document