scholarly journals Imitating the brain with neurocomputer a “new” way towards artificial general intelligence

2017 ◽  
Vol 14 (5) ◽  
pp. 520-531 ◽  
Author(s):  
Tie-Jun Huang
2020 ◽  
Vol 11 (1) ◽  
pp. 1-37
Author(s):  
Claes Strannegård ◽  
Wen Xu ◽  
Niklas Engsner ◽  
John A. Endler

AbstractAlthough animals such as spiders, fish, and birds have very different anatomies, the basic mechanisms that govern their perception, decision-making, learning, reproduction, and death have striking similarities. These mechanisms have apparently allowed the development of general intelligence in nature. This led us to the idea of approaching artificial general intelligence (AGI) by constructing a generic artificial animal (animat) with a configurable body and fixed mechanisms of perception, decision-making, learning, reproduction, and death. One instance of this generic animat could be an artificial spider, another an artificial fish, and a third an artificial bird. The goal of all decision-making in this model is to maintain homeostasis. Thus actions are selected that might promote survival and reproduction to varying degrees. All decision-making is based on knowledge that is stored in network structures. Each animat has two such network structures: a genotype and a phenotype. The genotype models the initial nervous system that is encoded in the genome (“the brain at birth”), while the phenotype represents the nervous system in its present form (“the brain at present”). Initially the phenotype and the genotype coincide, but then the phenotype keeps developing as a result of learning, while the genotype essentially remains unchanged. The model is extended to ecosystems populated by animats that develop continuously according to fixed mechanisms for sexual or asexual reproduction, and death. Several examples of simple ecosystems are given. We show that our generic animat model possesses general intelligence in a primitive form. In fact, it can learn simple forms of locomotion, navigation, foraging, language, and arithmetic.


Author(s):  
Luca M. Possati

AbstractThe core hypothesis of this paper is that neuropsychoanalysis provides a new paradigm for artificial general intelligence (AGI). The AGI agenda could be greatly advanced if it were grounded in affective neuroscience and neuropsychoanalysis rather than cognitive science. Research in AGI has so far remained too cortical-centric; that is, it has privileged the activities of the cerebral cortex, the outermost part of our brain, and the main cognitive functions. Neuropsychoanalysis and affective neuroscience, on the other hand, affirm the centrality of emotions and affects—i.e., the subcortical area that represents the deepest and most ancient part of the brain in psychic life. The aim of this paper is to define some general design principles of an AGI system based on the brain/mind relationship model formulated in the works of Mark Solms and Jaak Panksepp. In particular, the paper analyzes Panksepp’s seven effective systems and how they can be embedded into an AGI system through Judea Pearl’s causal analysis. In the conclusions, the author explains why building a sub-cortical AGI is the best way to solve the problem of AI control. This paper is intended to be an original contribution to the discussion on AGI by elaborating positive arguments in favor of it.


2021 ◽  
pp. 1-6
Author(s):  
Scott McLean ◽  
Gemma J. M. Read ◽  
Jason Thompson ◽  
P. A. Hancock ◽  
Paul M. Salmon

2020 ◽  
Author(s):  
Andy E Williams

INTRODUCTION: With advances in big data techniques having already led to search results and advertising being customized to the individual user, the concept of an online education designed solely for an individual, or the concept of online news or entertainment media, or any other virtual service being designed uniquely for each individual, no longer seems as far fetched. However, designing services that maximize user outcomes as opposed to services that maximize outcomes for the corporation owning them, requires modeling user processes and the outcomes they target.OBJECTIVES: To explore the use of Human-Centric Functional Modeling (HCFM) to define functional state spaces within which human processes are well-defined paths, and within which products and services solve specific navigation problems, so that by considering all of any given individual’s desired paths through a given state space, it is possible to automate the customization of those products and services for that individual or to groups of individuals.METHODS: An analysis is performed to assess how and whether intelligent agents based on some subset of functionality required for Artificial General Intelligence (AGI) might be used to optimize for the individual user. And an analysis is performed to determine whether and if so how General Collective Intelligence (GCI) might be used to optimize across all users.RESULTS: AGI and GCI create the possibility to individualize products and services, even shared services such as the Internet, or news services so that every individual sees a different version.CONCLUSION: The conceptual example of customizing a news media website for two individual users of opposite political persuasions suggests that while the overhead of customizing such services might potentially result in massively increased storage and processing overhead, within a network of cooperating services in which this customization reliably creates value, this is potentially a significant opportunity.


Sign in / Sign up

Export Citation Format

Share Document