Oxytocin, sexually-dimorphic social brain and behavior, and autism

2012 ◽  
Vol 60 (5) ◽  
pp. S66
Author(s):  
H. Yamasue
Author(s):  
C. Sue Carter ◽  
Suma Jacob

The effects of oxytocin and vasopressin on the brain and behavior can be sexually dimorphic, especially during the course of development (Bales, Kim, et al., 2004; Bales, Pfeifer, et al., 2004; Bales, Plotsky, et al., 2007; Bielsky et al., 2005a; Carter, 2003; Thompson et al., 2006; Yamamoto et al., 2005; Yamamoto et al., 2004). Given the sexual discrepancy observed in autism spectrum disorders (ASDs), these two neuropeptides, oxytocin (OT) and arginine vasopressin (AVP), have received attention for their potential role in ASDs (Green and Hollander, 2010; Insel et al., 1999; Leckman & Herman, 2002; Welch et al., 2005; Winslow, 2005; Young et al., 2002). Changes in either OT or AVP and their receptors could be capable of influencing symptom domains or behaviors associated with ASDs. Arginine vasopressin is androgen dependent in some brain regions (De Vries & Panzica, 2006), and males are more sensitive to AVP, especially during development. We hypothesize here that AVP, which has a unique role in males, must be present in optimal levels to be protective against ASDs. Either excess AVP or disruptions in the AVP system could play a role in development of the traits found in ASDs. In contrast, OT may possibly be secreted in response to adversity, especially in females, serving as a protective factor.


Endocrinology ◽  
2020 ◽  
Vol 161 (10) ◽  
Author(s):  
Kimberly J Jennings ◽  
Luis de Lecea

Abstract Gonadal hormones contribute to the sexual differentiation of brain and behavior throughout the lifespan, from initial neural patterning to “activation” of adult circuits. Sexual behavior is an ideal system in which to investigate the mechanisms underlying hormonal activation of neural circuits. Sexual behavior is a hormonally regulated, innate social behavior found across species. Although both sexes seek out and engage in sexual behavior, the specific actions involved in mating are sexually dimorphic. Thus, the neural circuits mediating sexual motivation and behavior in males and females are overlapping yet distinct. Furthermore, sexual behavior is strongly dependent on circulating gonadal hormones in both sexes. There has been significant recent progress on elucidating how gonadal hormones modulate physiological properties within sexual behavior circuits with consequences for behavior. Therefore, in this mini-review we review the neural circuits of male and female sexual motivation and behavior, from initial sensory detection of pheromones to the extended amygdala and on to medial hypothalamic nuclei and reward systems. We also discuss how gonadal hormones impact the physiology and functioning of each node within these circuits. By better understanding the myriad of ways in which gonadal hormones impact sexual behavior circuits, we can gain a richer and more complete appreciation for the neural substrates of complex behavior.


2009 ◽  
Vol 516 (4) ◽  
pp. 312-320 ◽  
Author(s):  
Sharon M.H. Gobes ◽  
Sita M. ter Haar ◽  
Clémentine Vignal ◽  
Amélie L. Vergne ◽  
Nicolas Mathevon ◽  
...  

Author(s):  
Anna Kovalchuk ◽  
Richelle Mychasiuk ◽  
Arif Muhammad ◽  
Shakhawat Hossain ◽  
Yaroslav Ilnytskyy ◽  
...  

1959 ◽  
Vol 4 (1) ◽  
pp. 9-10
Author(s):  
LEONARD CARMICHAEL

1985 ◽  
Vol 30 (12) ◽  
pp. 999-999
Author(s):  
Gerald S. Wasserman

Sign in / Sign up

Export Citation Format

Share Document