differential responsiveness
Recently Published Documents


TOTAL DOCUMENTS

218
(FIVE YEARS 25)

H-INDEX

43
(FIVE YEARS 3)

2021 ◽  
pp. 1-20
Author(s):  
Mads Andreas Elkjær ◽  
Michael Baggesen Klitgaard

Do political outcomes respond more strongly to the preferences of the rich? In an age of rising inequality, this question has become increasingly salient. Yet, although an influential literature has emerged, no systematic account exists either of the severity of differentials in political responsiveness, the potential drivers of those differentials, or the variation across democracies. This article fills that gap. We analyze 1,163 estimates of responsiveness from 25 studies and find that, although this research collectively suggests that political outcomes better reflect the preferences of the rich, results vary considerably across models and studies. The divergence in results is partly driven by partisanship and the model specification, while we find no significant variation across either policy domains or general/specific measures of political outcomes. Finally, and against theoretical expectations, published research suggests that differentials in responsiveness are weaker in the United States compared to other developed democracies. The article contributes to our understanding of differential responsiveness by clarifying the main debates and findings in the literature, identifying issues and gaps, and pointing to fruitful avenues for future research.


2021 ◽  
Vol 14 (10) ◽  
Author(s):  
Youwen Zhang ◽  
Chang-uk Lim ◽  
Vitali Sikirzhytski ◽  
Asieh Naderi ◽  
Ioulia Chatzistamou ◽  
...  

ABSTRACT The unfolded protein response (UPR) is involved in the pathogenesis of metabolic disorders, yet whether variations in the UPR among individuals influence the propensity for metabolic disease remains unexplored. Using outbred deer mice as a model, we show that the intensity of UPR in fibroblasts isolated early in life predicts the extent of body weight gain after high-fat diet (HFD) administration. Contrary to those with intense UPR, animals with moderate UPR in fibroblasts and therefore displaying compromised stress resolution did not gain body weight but developed inflammation, especially in the skin, after HFD administration. Fibroblasts emerged as potent modifiers of this differential responsiveness to HFD, as indicated by the comparison of the UPR profiles of fibroblasts responding to fatty acids in vitro, by correlation analyses between UPR and proinflammatory cytokine-associated transcriptomes, and by BiP (also known as HSPA5) immunolocalization in skin lesions from animals receiving HFD. These results suggest that the UPR operates as a modifier of an individual's propensity for body weight gain in a manner that, at least in part, involves the regulation of an inflammatory response by skin fibroblasts. This article has an associated First Person interview with the first author of the paper.


Author(s):  
Michail E. Keramidas ◽  
Roger Kölegård ◽  
Patrik Sundblad ◽  
Håkan Sköldefors ◽  
Ola Eiken

We examined the in vivo pressure-flow relationship in human cutaneous vessels during acute and repeated elevations of local transmural pressure. In 10 healthy men, red blood cell flux was monitored simultaneously on the non-glabrous skin of the forearm and the glabrous skin of a finger during a vascular pressure provocation, wherein the blood vessels of an arm were exposed to a wide range of stepwise increasing distending pressures. Forearm skin blood flux was relatively stable at slight and moderate elevations of distending pressure, whereas it increased ~3-4-fold at the highest levels (P = 0.004). Finger blood flux on the contrary, dropped promptly and consistently throughout the provocation (P < 0.001). Eight of the subjects repeated the provocation trial after a 5-week pressure-training regimen, during which the vasculature in one arm was exposed intermittently (40 min, 3 times・week-1) to increased transmural pressure (from +65 mmHg week-1 to +105 mmHg week-5). The training regimen diminished the pressure-induced increase in forearm blood flux by ~34% (P = 0.02), whereas it inhibited the reduction in finger blood flux (P < 0.001) in response to slight and moderate distending pressure elevations. The present findings demonstrate that, during local pressure perturbations, the cutaneous autoregulatory function is accentuated in glabrous compared to in the non-glabrous skin regions. Prolonged intermittent regional exposures to augmented intravascular pressure blunt the responsiveness of the glabrous skin, but enhance arteriolar pressure resistance in the non-glabrous skin.


Insects ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 768
Author(s):  
Ricarda Scheiner ◽  
Kayun Lim ◽  
Marina D. Meixner ◽  
Martin S. Gabel

The Western honeybee (Apis mellifera L.) is one of the most widespread insects with numerous subspecies in its native range. How far adaptation to local habitats has affected the cognitive skills of the different subspecies is an intriguing question that we investigate in this study. Naturally mated queens of the following five subspecies from different parts of Europe were transferred to Southern Germany: A. m. iberiensis from Portugal, A. m. mellifera from Belgium, A. m. macedonica from Greece, A. m. ligustica from Italy, and A. m. ruttneri from Malta. We also included the local subspecies A. m. carnica in our study. New colonies were built up in a common apiary where the respective queens were introduced. Worker offspring from the different subspecies were compared in classical olfactory learning performance using the proboscis extension response. Prior to conditioning, we measured individual sucrose responsiveness to investigate whether possible differences in learning performances were due to differential responsiveness to the sugar water reward. Most subspecies did not differ in their appetitive learning performance. However, foragers of the Iberian honeybee, A. m. iberiensis, performed significantly more poorly, despite having a similar sucrose responsiveness. We discuss possible causes for the poor performance of the Iberian honeybees, which may have been shaped by adaptation to the local habitat.


2021 ◽  
Vol 5 (15) ◽  
pp. 2945-2957
Author(s):  
Malgorzata Nowicka ◽  
Laura K. Hilton ◽  
Margaret Ashton-Key ◽  
Chantal E. Hargreaves ◽  
Chern Lee ◽  
...  

Abstract Fc γ receptor IIB (FcγRIIB) is an inhibitory molecule capable of reducing antibody immunotherapy efficacy. We hypothesized its expression could confer resistance in patients with diffuse large B-cell lymphoma (DLBCL) treated with anti-CD20 monoclonal antibody (mAb) chemoimmunotherapy, with outcomes varying depending on mAb (rituximab [R]/obinutuzumab [G]) because of different mechanisms of action. We evaluated correlates between FCGR2B messenger RNA and/or FcγRIIB protein expression and outcomes in 3 de novo DLBCL discovery cohorts treated with R plus cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) reported by Arthur, Schmitz, and Reddy, and R-CHOP/G-CHOP-treated patients in the GOYA trial (NCT01287741). In the discovery cohorts, higher FCGR2B expression was associated with significantly shorter progression-free survival (PFS; Arthur: hazard ratio [HR], 1.09; 95% confidence interval [CI], 1.01-1.19; P = .0360; Schmitz: HR, 1.13; 95% CI, 1.02-1.26; P = .0243). Similar results were observed in GOYA with R-CHOP (HR, 1.26; 95% CI, 1.00-1.58; P = .0455), but not G-CHOP (HR, 0.91; 95% CI, 0.69-1.20; P = .50). A nonsignificant trend that high FCGR2B expression favored G-CHOP over R-CHOP was observed (HR, 0.67; 95% CI, 0.44-1.02; P = .0622); however, low FCGR2B expression favored R-CHOP (HR, 1.58; 95% CI, 1.00-2.50; P = .0503). In Arthur and GOYA, FCGR2B expression was associated with tumor FcγRIIB expression; correlating with shorter PFS for R-CHOP (HR, 2.17; 95% CI, 1.04-4.50; P = .0378), but not G-CHOP (HR, 1.37; 95% CI, 0.66-2.87; P = .3997). This effect was independent of established prognostic biomarkers. High FcγRIIB/FCGR2B expression has prognostic value in R-treated patients with DLBCL and may confer differential responsiveness to R-CHOP/G-CHOP.


2021 ◽  
Author(s):  
Ricarda Scheiner ◽  
Kayun Lim ◽  
Marina D Meixner ◽  
Martin S Gabel

The Western honeybee (Apis mellifera L.) is one of the most widespread insects with numerous subspecies in its native range. In how far adaptation to local habitats has affected the cognitive skills of the different subspecies is an intriguing question which we investigate in this study. Naturally mated queens of the following five subspecies from different parts of Europe were transferred to Southern Germany: A. m. iberiensis from Portugal, A. m. mellifera from Belgium, A. m. macedonica from Greece, A.m. ligustica from Italy and A. m. ruttneri from Malta. We also included the local subspecies A.m. carnica in our study. New colonies were built up in a common apiary where the respective queens were introduced. Worker offspring from the different subspecies was compared in classical olfactory learning performance using the proboscis extension response. Prior to conditioning we measured individual sucrose responsiveness to investigate whether possible differences in learning performances were due to a differential responsiveness to the sugar water reward. Most subspecies did not differ in their appetitive learning performance. However, foragers of the Iberian honeybee, A. m. iberiensis, performed significantly more poorly, despite having a similar sucrose responsiveness. We discuss possible causes for the low cognitive performance of the Iberian honeybees, which may have been shaped by adaptation to local habitat.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhigang Wang ◽  
Haitao Zhao ◽  
Yan Zhang ◽  
Auginia Natalia ◽  
Chin-Ann J. Ong ◽  
...  

AbstractThe controlled assembly of nanomaterials into desired architectures presents many opportunities; however, current preparations lack spatial precision and versatility in developing complex nano-architectures. Inspired by the amphiphilic nature of surfactants, we develop a facile approach to guide nanomaterial integration – spatial organization and distribution – in metal-organic frameworks (MOFs). Named surfactant tunable spatial architecture (STAR), the technology leverages the varied interactions of surfactants with nanoparticles and MOF constituents, respectively, to direct nanoparticle arrangement while molding the growing framework. By surfactant matching, the approach achieves not only tunable and precise integration of diverse nanomaterials in different MOF structures, but also fast and aqueous synthesis, in solution and on solid substrates. Employing the approach, we develop a dual-probe STAR that comprises peripheral working probes and central reference probes to achieve differential responsiveness to biomarkers. When applied for the direct profiling of clinical ascites, STAR reveals glycosylation signatures of extracellular vesicles and differentiates cancer patient prognosis.


2021 ◽  
Author(s):  
Ana R Moshkovsky ◽  
Marc W Kirschner

Axin is one of two essential scaffolds in the canonical Wnt pathway that converts signals at the plasma membrane to signals inhibiting the degradation of β-catenin, leading to its accumulation and specific gene activation. In vertebrates there are two forms of Axin, Axin1 and Axin2, which are similar at the protein level and genetically redundant. We show here that differential regulation of the two genes on the transcriptional and proteostatic level confers robustness and differential responsiveness that can be used in tissue specific regulation. Such subtle features may distinguish other redundant gene pairs that are commonly found in vertebrates through gene knockout experiments.


Sign in / Sign up

Export Citation Format

Share Document