Diffusion tensor imaging in primary brain tumors: Reproducible quantitative analysis of corpus callosum infiltration and contralateral involvement using a probabilistic mixture model

NeuroImage ◽  
2006 ◽  
Vol 31 (2) ◽  
pp. 531-542 ◽  
Author(s):  
Bram Stieltjes ◽  
Mathias Schlüter ◽  
Bernd Didinger ◽  
Marc-André Weber ◽  
Horst K. Hahn ◽  
...  
2021 ◽  
Vol 11 (2) ◽  
pp. 271
Author(s):  
Santiago Cepeda ◽  
Sergio García-García ◽  
María Velasco-Casares ◽  
Gabriel Fernández-Pérez ◽  
Tomás Zamora ◽  
...  

Intraoperative ultrasound elastography (IOUS-E) is a novel image modality applied in brain tumor assessment. However, the potential links between elastographic findings and other histological and neuroimaging features are unknown. This study aims to find associations between brain tumor elasticity, diffusion tensor imaging (DTI) metrics, and cell proliferation. A retrospective study was conducted to analyze consecutively admitted patients who underwent craniotomy for supratentorial brain tumors between March 2018 and February 2020. Patients evaluated by IOUS-E and preoperative DTI were included. A semi-quantitative analysis was performed to calculate the mean tissue elasticity (MTE). Diffusion coefficients and the tumor proliferation index by Ki-67 were registered. Relationships between the continuous variables were determined using the Spearman ρ test. A predictive model was developed based on non-linear regression using the MTE as the dependent variable. Forty patients were evaluated. The pathologic diagnoses were as follows: 21 high-grade gliomas (HGG); 9 low-grade gliomas (LGG); and 10 meningiomas. Cases with a proliferation index of less than 10% had significantly higher medians of MTE (110.34 vs. 79.99, p < 0.001) and fractional anisotropy (FA) (0.24 vs. 0.19, p = 0.020). We found a strong positive correlation between MTE and FA (rs (38) = 0.91, p < 0.001). A cubic spline non-linear regression model was obtained to predict tumoral MTE from FA (R2 = 0.78, p < 0.001). According to our results, tumor elasticity is associated with histopathological and DTI-derived metrics. These findings support the usefulness of IOUS-E as a complementary tool in brain tumor surgery.


2017 ◽  
Author(s):  
András Jakab ◽  
Ruth O`Gorman Tuura ◽  
Christian Kellenberger ◽  
Ianina Scheer

AbstractOur purpose was to evaluate the within-subject reproducibility of in utero diffusion tensor imaging (DTI) metrics and the visibility of major white matter structures.Images for 30 fetuses (20-33. postmenstrual weeks, normal neurodevelopment: 6 cases, cerebral pathology: 24 cases) were acquired on 1.5T or 3.0T MRI. DTI with 15 diffusion-weighting directions was repeated three times for each case, TR/TE: 2200/63 ms, voxel size: 1*1 mm, slice thickness: 3-5 mm, b-factor: 700 s/mm2. Reproducibility was evaluated from structure detectability, variability of DTI measures using the coefficient of variation (CV), image correlation and structural similarity across repeated scans for six selected structures. The effect of age, scanner type, presence of pathology was determined using Wilcoxon rank sum test.White matter structures were detectable in the following percentage of fetuses in at least two of the three repeated scans: corpus callosum genu 76%, splenium 64%, internal capsule, posterior limb 60%, brainstem fibers 40% and temporooccipital association pathways 60%. The mean CV of DTI metrics ranged between 3% and 14.6% and we measured higher reproducibility in fetuses with normal brain development. Head motion was negatively correlated with reproducibility, this effect was partially ameliorated by motion-correction algorithm using image registration. Structures on 3.0 T had higher variability both with- and without motion correction.Fetal DTI is reproducible for projection and commissural bundles during mid-gestation, however, in 16-30% of the cases, data were corrupted by artifacts, resulting in impaired detection of white matter structures. To achieve robust results for the quantitative analysis of diffusivity and anisotropy values, fetal-specific image processing is recommended and repeated DTI is needed to ensure the detectability of fiber pathways.AbbreviationsADaxial diffusivity;CCAcorpus callosum agenesis;CVcoefficient of variation,DTIdiffusion tensor imaging;FAfractional anisotropy;GWgestational week;MDmean diffusivity;RDradial diffusivity;ROIregion of interest;SSIMstructural similarity index


2019 ◽  
Vol 124 ◽  
pp. e540-e551
Author(s):  
Khursheed Alam Khan ◽  
Shashi Kant Jain ◽  
Virendra Deo Sinha ◽  
Jyotsna Sinha

Sign in / Sign up

Export Citation Format

Share Document