Brain maturation: Predicting individual BrainAGE in children and adolescents using structural MRI

NeuroImage ◽  
2012 ◽  
Vol 63 (3) ◽  
pp. 1305-1312 ◽  
Author(s):  
Katja Franke ◽  
Eileen Luders ◽  
Arne May ◽  
Marko Wilke ◽  
Christian Gaser
SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A123-A124
Author(s):  
A B Neikrug ◽  
S Radom-Aizik ◽  
I Y Chen ◽  
A Stehli ◽  
K K Lui ◽  
...  

Abstract Introduction Aerobic fitness facilitates brain synaptic plasticity, which influences global and local sleep expression. While it is known that sleep patterns/behavior and non-rapid eye movement (NREM) sleep slow wave activity (SWA) tracks brain maturation, little is known about how aerobic fitness and sleep interact during growth and development in children and adolescents. The aim of this pilot study was to characterize relationships among aerobic fitness, measures of global/local sleep expression, and habitual sleep patterns in children and adolescents. We hypothesized that greater aerobic fitness would be associated with better sleep quality, indicated by increased SWA. Methods Twenty healthy youth (11-17 years-old, 11 female) were evaluated during summer vacation (no school schedule constraints). Aerobic fitness (VO2peak) was measured using ramp-type progressive cycle ergometry, habitual sleep (i.e., sleep-time consistency and circadian activity patterns) was assessed with 7-day actigraphy, and ad lib sleep was evaluated during overnight polysomnography (PSG) with high-density electroencephalography (hdEEG; 128 channels). Spectral analysis was implemented to quantify SWA (0.5-4.5Hz). Data were analyzed using linear regression analyses and exploratory independent samples t-tests. Results Negative correlations were observed between VO2peak and sleep measures including sleep-time consistency (partial r=-0.53, p=0.045) and timing/acrophase of the circadian activity rhythm (partial r=-0.64, p=0.01) while controlling for sex and age. Additionally, after accounting for Tanner stage and sex, data demonstrated significant effects in SWA at frontal derivations (p=0.024) between low and high fitness levels at topographically specific and meaningful EEG derivations, e.g. over frontal cortex. Conclusion These results suggest that children and adolescents with greater fitness have less variability in sleep-times (improved sleep consistency), tend to have a more advanced circadian activity phase (i.e., go to sleep earlier), and express greater frontal SWA, supporting the hypothesis that fitness is associated with improved local and global sleep quality. Future research with larger samples is necessary to further evaluate these relationships, and to determine if interventions that improve fitness also improve sleep and related brain plasticity. Support NCATS grant #UL1TR001414 & PERC Systems Biology Fund


2018 ◽  
Vol 13 (5) ◽  
pp. 1273-1280 ◽  
Author(s):  
Jianing Zhang ◽  
Wanyi Cao ◽  
Mingyu Wang ◽  
Nizhuan Wang ◽  
Shuqiao Yao ◽  
...  

Neuroreport ◽  
2007 ◽  
Vol 18 (9) ◽  
pp. 875-880 ◽  
Author(s):  
Xiaojuan Guo ◽  
Chuansheng Chen ◽  
Kewei Chen ◽  
Zhen Jin ◽  
Danling Peng ◽  
...  

2020 ◽  
Author(s):  
Joëlle Bagautdinova ◽  
Daniela Zöller ◽  
Marie Schaer ◽  
Maria Carmela Padula ◽  
Valentina Mancini ◽  
...  

AbstractSchizophrenia has been extensively associated with reduced cortical thickness (CT), and its neurodevelopmental origin is increasingly acknowledged. However, the exact timing and extent of alterations occurring in preclinical phases remain unclear. With a high prevalence of psychosis, 22q11.2 deletion syndrome (22q11DS) is a neurogenetic disorder that represents a unique opportunity to examine brain maturation in high-risk individuals. In this study, we quantified trajectories of CT maturation in 22q11DS and examined the association of CT development with the emergence of psychotic symptoms. Longitudinal structural MRI data with 1-6 time points were collected from 324 participants aged 5-35 years (N=148 22q11DS, N=176 controls), resulting in a total of 636 scans (N=334 22q11DS, N=302 controls). Mixed model regression analyses were used to compare CT trajectories between participants with 22q11DS and controls. Further, CT trajectories were compared between participants with 22q11DS who developed (N=61, 146 scans), or remained exempt of (N=47; 98 scans) positive psychotic symptoms during development. Compared to controls, participants with 22q11DS showed widespread increased CT, focal reductions in the posterior cingulate gyrus and superior temporal gyrus (STG), and accelerated cortical thinning during adolescence, mainly in fronto-temporal regions. Within 22q11DS, individuals who developed psychotic symptoms showed exacerbated cortical thinning in the right STG. Together, these findings suggest that genetic predisposition for psychosis is associated with increased CT starting from childhood and altered maturational trajectories of CT during adolescence, affecting predominantly fronto-temporal regions. In addition, accelerated thinning in the STG may represent an early biomarker associated with the emergence of psychotic symptoms.


2013 ◽  
Vol 44 (02) ◽  
Author(s):  
M Wilke ◽  
A Winkler ◽  
R Goelz ◽  
TK Hauser ◽  
K Franke ◽  
...  

Author(s):  
Joëlle Bagautdinova ◽  
Daniela Zöller ◽  
Marie Schaer ◽  
Maria Carmela Padula ◽  
Valentina Mancini ◽  
...  

AbstractSchizophrenia has been extensively associated with reduced cortical thickness (CT), and its neurodevelopmental origin is increasingly acknowledged. However, the exact timing and extent of alterations occurring in preclinical phases remain unclear. With a high prevalence of psychosis, 22q11.2 deletion syndrome (22q11DS) is a neurogenetic disorder that represents a unique opportunity to examine brain maturation in high-risk individuals. In this study, we quantified trajectories of CT maturation in 22q11DS and examined the association of CT development with the emergence of psychotic symptoms. Longitudinal structural MRI data with 1–6 time points were collected from 324 participants aged 5–35 years (N = 148 22q11DS, N = 176 controls), resulting in a total of 636 scans (N = 334 22q11DS, N = 302 controls). Mixed model regression analyses were used to compare CT trajectories between participants with 22q11DS and controls. Further, CT trajectories were compared between participants with 22q11DS who developed (N = 61, 146 scans), or remained exempt of (N = 47; 98 scans) positive psychotic symptoms during development. Compared to controls, participants with 22q11DS showed widespread increased CT, focal reductions in the posterior cingulate gyrus and superior temporal gyrus (STG), and accelerated cortical thinning during adolescence, mainly in frontotemporal regions. Within 22q11DS, individuals who developed psychotic symptoms showed exacerbated cortical thinning in the right STG. Together, these findings suggest that genetic predisposition for psychosis is associated with increased CT starting from childhood and altered maturational trajectories of CT during adolescence, affecting predominantly frontotemporal regions. In addition, accelerated thinning in the STG may represent an early biomarker associated with the emergence of psychotic symptoms.


SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A127-A127
Author(s):  
K K Lui ◽  
B A Mander ◽  
S Radom-Aizik ◽  
M G Chappel-Farley ◽  
A Dave ◽  
...  

Abstract Introduction The prefrontal cortex, an area known for executive functioning (including inhibition and self-monitoring) develops during childhood and adolescents, with a pattern of posterior to anterior brain development. Slow-wave activity (SWA) in NREM sleep, tracks brain development with high SWA power migrating from occipital to frontal region as brain maturation occurs. This pilot study aimed to examine whether slow wave topography is correlated with executive function in youth. Methods Seventeen healthy children and adolescents (ages 11-17; 10 females) underwent overnight polysomnography (PSG) with high-density electroencephalography (hdEEG). Behavior Rating Inventory of Executive Function (BRIEF) was administered to assess executive function. SWA (SWA1: 0.5-1 Hz; SWA2: 1-4.5 Hz) and spindle (slow sigma: 11-13 Hz; fast sigma: 13-16 Hz) activity was analyzed with spectral analysis using Welch’s method. BRIEF subscales of inhibition and monitor were correlated with SWA and sigma power across all derivations, with Holm-Bonferroni correction (126 channels). Significant derivations were then controlled for sex and self-reported Tanner stage using multiple regression Results BRIEF-Inhibition scale (i.e., ability to repress impulsivity) and SWA1 in anterior frontal derivations were negatively correlated (R2=0.58, p=0.047 corrected). BRIEF-Monitor scale (i.e., self-perception of one’s own behavior and interpersonal awareness) was negatively correlated with fast sigma in anterior frontal derivations (R2=0.65, p=0.013 corrected). These associations were significant after controlling for sex and Tanner stage. Conclusion These results support the hypothesis that NREM sleep oscillations are associated with executive function and reflect changes in neuroplasticity related to “back-to-front” brain maturation. Future longitudinal studies should combine multi-modal neuroimaging of brain structure and local sleep with comprehensive assessments of executive function to evaluate the possible link between local sleep and development of higher-order cognition in frontal brain regions in youth. Support NCATS grant #UL1TR001414 & PERC Systems Biology Fund


Sign in / Sign up

Export Citation Format

Share Document