scholarly journals Combat-related blast exposure and traumatic brain injury influence brain glucose metabolism during REM sleep in military veterans

NeuroImage ◽  
2014 ◽  
Vol 99 ◽  
pp. 207-214 ◽  
Author(s):  
Ryan P.J. Stocker ◽  
Marissa A. Cieply ◽  
Benjamin Paul ◽  
Hassen Khan ◽  
Luke Henry ◽  
...  
2018 ◽  
Vol 57 ◽  
pp. 20-25 ◽  
Author(s):  
Tomohiro Yamaki ◽  
Yoshio Uchino ◽  
Haruko Henmi ◽  
Mizuho Kamezawa ◽  
Miyoko Hayakawa ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
pp. 229-239 ◽  
Author(s):  
Dario Arnaldi ◽  
Sanne K. Meles ◽  
Alessandro Giuliani ◽  
Silvia Morbelli ◽  
Remco J. Renken ◽  
...  

2012 ◽  
Author(s):  
Lee A. Wiegand ◽  
Heather Hughes ◽  
Margie Hernandez ◽  
Davor Zink ◽  
Alan Steed ◽  
...  

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Julien Delrieu ◽  
Thierry Voisin ◽  
Laure Saint-Aubert ◽  
Isabelle Carrie ◽  
Christelle Cantet ◽  
...  

Abstract Background The Multidomain Alzheimer Preventive Trial (MAPT) was designed to assess the efficacy of omega-3 fatty acid supplementation, multidomain intervention (MI), or a combination of both on cognition. Although the MAPT study was negative, an effect of MI in maintaining cognitive functions compared to placebo group was showed in positive amyloid subjects. A FDG PET study (MAPT-NI) was implemented to test the impact of MI on brain glucose metabolism. Methods MAPT-NI was a randomized, controlled parallel-group single-center study, exploring the effect of MI on brain glucose metabolism. Participants were non-demented and had memory complaints, limitation in one instrumental activity of daily living, or slow gait. Participants were randomly assigned (1:1) to “MI group” or “No MI group.” The MI consisted of group sessions focusing on 3 domains: cognitive stimulation, physical activity, nutrition, and a preventive consultation. [18F]FDG PET scans were performed at baseline, 6 months, and 12 months, and cerebral magnetic resonance imaging scans at baseline. The primary objective was to evaluate the MI effect on brain glucose metabolism assessed by [18F]FDG PET imaging at 6 months. The primary outcome was the quantification of regional metabolism rate for glucose in cerebral regions involved early in Alzheimer disease by relative semi-quantitative SUVr (FDG-based AD biomarker). An exploratory voxel-wise analysis was performed to assess the effect of MI on brain glucose metabolism without anatomical hypothesis. Results The intention-to-treat population included 67 subjects (34 in the MI group and 33 in the No MI group. No significant MI effect was observed on primary outcome at 6 months. In the exploratory voxel-wise analysis, we observed a difference in favor of MI group on the change of cerebral glucose metabolism in limbic lobe (right hippocampus, right posterior cingulate, left posterior parahippocampal gyrus) at 6 months. Conclusions MI failed to show an effect on metabolism in FDG-based AD biomarker, but exploratory analysis suggested positive effect on limbic system metabolism. This finding could suggest a delay effect of MI on AD progression. Trial registration ClinicalTrials.gov Identifier, NCT01513252.


2020 ◽  
Vol 35 (6) ◽  
pp. 919-919
Author(s):  
Lange R ◽  
Lippa S ◽  
Hungerford L ◽  
Bailie J ◽  
French L ◽  
...  

Abstract Objective To examine the clinical utility of PTSD, Sleep, Resilience, and Lifetime Blast Exposure as ‘Risk Factors’ for predicting poor neurobehavioral outcome following traumatic brain injury (TBI). Methods Participants were 993 service members/veterans evaluated following an uncomplicated mild TBI (MTBI), moderate–severe TBI (ModSevTBI), or injury without TBI (Injured Controls; IC); divided into three cohorts: (1) < 12 months post-injury, n = 237 [107 MTBI, 71 ModSevTBI, 59 IC]; (2) 3-years post-injury, n = 370 [162 MTBI, 80 ModSevTBI, 128 IC]; and (3) 10-years post-injury, n = 386 [182 MTBI, 85 ModSevTBI, 119 IC]. Participants completed a 2-hour neurobehavioral test battery. Odds Ratios (OR) were calculated to determine whether the ‘Risk Factors’ could predict ‘Poor Outcome’ in each cohort separately. Sixteen Risk Factors were examined using all possible combinations of the four risk factor variables. Poor Outcome was defined as three or more low scores (< 1SD) on five TBI-QOL scales (e.g., Fatigue, Depression). Results In all cohorts, the vast majority of risk factor combinations resulted in ORs that were ‘clinically meaningful’ (ORs > 3.00; range = 3.15 to 32.63, all p’s < .001). Risk factor combinations with the highest ORs in each cohort were PTSD (Cohort 1 & 2, ORs = 17.76 and 25.31), PTSD+Sleep (Cohort 1 & 2, ORs = 18.44 and 21.18), PTSD+Sleep+Resilience (Cohort 1, 2, & 3, ORs = 13.56, 14.04, and 20.08), Resilience (Cohort 3, OR = 32.63), and PTSD+Resilience (Cohort 3, OR = 24.74). Conclusions Singularly, or in combination, PTSD, Poor Sleep, and Low Resilience were strong predictors of poor outcome following TBI of all severities and injury without TBI. These variables may be valuable risk factors for targeted early interventions following injury.


2020 ◽  
Vol 16 (S10) ◽  
Author(s):  
Sarah Wehle Gehres ◽  
Andreia Silva da Rocha ◽  
Yuri Elias Rodrigues ◽  
Guilherme G Schu Peixoto ◽  
Afonso Kopczynski Carvalho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document