scholarly journals Neural representations of phonology in temporal cortex scaffold longitudinal reading gains in 5- to 7-year-old children

NeuroImage ◽  
2020 ◽  
Vol 207 ◽  
pp. 116359 ◽  
Author(s):  
Jin Wang ◽  
Marc F. Joanisse ◽  
James R. Booth
2019 ◽  
Author(s):  
Kamila M. Jozwik ◽  
Michael Lee ◽  
Tiago Marques ◽  
Martin Schrimpf ◽  
Pouya Bashivan

Image features computed by specific convolutional artificial neural networks (ANNs) can be used to make state-of-the-art predictions of primate ventral stream responses to visual stimuli.However, in addition to selecting the specific ANN and layer that is used, the modeler makes other choices in preprocessing the stimulus image and generating brain predictions from ANN features. The effect of these choices on brain predictivity is currently underexplored.Here, we directly evaluated many of these choices by performing a grid search over network architectures, layers, image preprocessing strategies, feature pooling mechanisms, and the use of dimensionality reduction. Our goal was to identify model configurations that produce responses to visual stimuli that are most similar to the human neural representations, as measured by human fMRI and MEG responses. In total, we evaluated more than 140,338 model configurations. We found that specific configurations of CORnet-S best predicted fMRI responses in early visual cortex, and CORnet-R and SqueezeNet models best predicted fMRI responses in inferior temporal cortex. We found specific configurations of VGG-16 and CORnet-S models that best predicted the MEG responses.We also observed that downsizing input images to ~50-75% of the input tensor size lead to better performing models compared to no downsizing (the default choice in most brain models for vision). Taken together, we present evidence that brain predictivity is sensitive not only to which ANN architecture and layer is used, but choices in image preprocessing and feature postprocessing, and these choices should be further explored.


2019 ◽  
Author(s):  
Daniel M. Vahaba ◽  
Amelia Hecsh ◽  
Luke Remage-Healey

ABSTRACTBirdsong, like human speech, is learned early in life by first memorizing an auditory model. Once memorized, birds compare their own burgeoning vocalizations to their auditory memory, and adjust their song to match the model. While much is known about this latter part of vocal learning, less is known about how initial auditory experiences are formed and consolidated. In both adults and developing songbirds, there is strong evidence suggesting the caudomedial nidopallium (NCM), a higher order auditory forebrain area, is the site of auditory memory consolidation. However, the mechanisms that facilitate this consolidation are poorly understood. One likely mechanism is 17β-estradiol (E2), which is associated with speech-language development and disorders in humans, and is abundant in both mammalian temporal cortex and songbird NCM. Circulating E2 is also elevated during the auditory memory phase, and in NCM immediately after song learning sessions, suggesting it functions to encode recent auditory experience. Therefore, we tested a role for E2 production in auditory memory consolidation during development using a comprehensive set of investigations to ask this question at the level of neuroanatomy, neurophysiology, and behavior. Our results demonstrate that while systemic estrogen synthesis blockade regulates juvenile song production, inhibiting E2 synthesis locally within NCM does not adversely affect song learning outcomes. Surprisingly, early life E2 manipulations in NCM modify the neural representations of birds’ own song and the model tutor song in both NCM and a downstream sensorimotor nucleus (HVC). Further, we show that the capacity to synthesize neuroestrogens remains high throughout development alongside substantial changes in NCM cell density across age. Taken together, these findings suggest that E2 plays a multifaceted role during development, and demonstrate that contrary to prediction, unilateral post-training estrogen synthesis blockade in the auditory cortex does not negatively impact vocal learning. Acute downregulation of neuroestrogens are therefore likely permissive for juvenile auditory memorization, while neuroestrogen synthesis influences communication production and representation in adulthood.


PLoS ONE ◽  
2011 ◽  
Vol 6 (4) ◽  
pp. e18913 ◽  
Author(s):  
Satoshi Eifuku ◽  
Wania C. De Souza ◽  
Ryuzaburo Nakata ◽  
Taketoshi Ono ◽  
Ryoi Tamura

2011 ◽  
Vol 105 (6) ◽  
pp. 2740-2752 ◽  
Author(s):  
R. Sigala ◽  
N. K. Logothetis ◽  
G. Rainer

Face categorization is fundamental for social interactions of primates and is crucial for determining conspecific groups and mate choice. Current evidence suggests that faces are processed by a set of well-defined brain areas. What is the fine structure of this representation, and how is it affected by visual experience? Here, we investigated the neural representations of human and monkey face categories using realistic three-dimensional morphed faces that spanned the continuum between the two species. We found an “own-species” bias in the categorical representation of human and monkey faces in the monkey inferior temporal cortex at the level of single neurons as well as in the population response analyzed using a pattern classifier. For monkey and human subjects, we also found consistent psychophysical evidence indicative of an own-species bias in face perception. For both behavioural and neural data, the species boundary was shifted away from the center of the morph continuum, for each species toward their own face category. This shift may reflect visual expertise for members of one's own species and be a signature of greater brain resources assigned to the processing of privileged categories. Such boundary shifts may thus serve as sensitive and robust indicators of encoding strength for categories of interest.


2015 ◽  
Vol 15 (12) ◽  
pp. 433
Author(s):  
Tessa Flack ◽  
Andrew Young ◽  
Timothy Andrews

2016 ◽  
Vol 26 (7) ◽  
pp. 3310-3322 ◽  
Author(s):  
Kasper Vinken ◽  
Gert Van den Bergh ◽  
Ben Vermaercke ◽  
Hans P. Op de Beeck

2007 ◽  
Vol 19 (3) ◽  
pp. 543-555 ◽  
Author(s):  
Bruno Rossion ◽  
Daniel Collins ◽  
Valérie Goffaux ◽  
Tim Curran

The degree of commonality between the perceptual mechanisms involved in processing faces and objects of expertise is intensely debated. To clarify this issue, we recorded occipito-temporal event-related potentials in response to faces when concurrently processing visual objects of expertise. In car experts fixating pictures of cars, we observed a large decrease of an evoked potential elicited by face stimuli between 130 and 200 msec, the N170. This sensory suppression was much lower when the car and face stimuli were separated by a 200-msec blank interval. With and without this delay, there was a strong correlation between the face-evoked N170 amplitude decrease and the subject's level of car expertise as measured in an independent behavioral task. Together, these results show that neural representations of faces and nonface objects in a domain of expertise compete for visual processes in the occipito-temporal cortex as early as 130–200 msec following stimulus onset.


2011 ◽  
Vol 71 ◽  
pp. e279-e280
Author(s):  
Satoshi Eifuku ◽  
Wania C. De Souza ◽  
Ryuzaburo Nakata ◽  
Taketoshi Ono ◽  
Ryoi Tamura

Sign in / Sign up

Export Citation Format

Share Document