vocal learning
Recently Published Documents


TOTAL DOCUMENTS

524
(FIVE YEARS 164)

H-INDEX

59
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Sarah W. Bottjer ◽  
Chloé L. Le Moing ◽  
Ellysia J. Li ◽  
Rachel C. Yuan

Vocal learning in songbirds is mediated by a highly localized system of interconnected forebrain regions, including recurrent loops that traverse the cortex, basal ganglia, and thalamus. This brain-behavior system provides a powerful model for elucidating mechanisms of vocal learning, with implications for learning speech in human infants, as well as for advancing our understanding of skill learning in general. A long history of experiments in this area has tested neural responses to playback of different song stimuli in anesthetized birds at different stages of vocal development. These studies have demonstrated selectivity for different song types that provide neural signatures of learning. In contrast to the ease of obtaining responses to song playback in anesthetized birds, song-evoked responses in awake birds are greatly reduced or absent, indicating that behavioral state is an important determinant of neural responsivity. Song-evoked responses can be elicited in sleeping as well as anesthetized zebra finches, and the selectivity of responses to song playback in adult birds tends to be highly similar between anesthetized and sleeping states, encouraging the idea that anesthesia and sleep are highly similar. In contrast to that idea, we report evidence that cortical responses to song playback in juvenile zebra finches (Taeniopygia guttata) differ greatly between sleep and urethane anesthesia. This finding indicates that behavioral states differ in sleep versus anesthesia and raises questions about relationships between developmental changes in sleep activity, selectivity for different song types, and the neural substrate for vocal learning.


Languages ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 5
Author(s):  
Jon T. Sakata ◽  
David Birdsong

Comparisons between the communication systems of humans and animals are instrumental in contextualizing speech and language into an evolutionary and biological framework and for illuminating mechanisms of human communication. As a complement to previous work that compares developmental vocal learning and use among humans and songbirds, in this article we highlight phenomena associated with vocal learning subsequent to the development of primary vocalizations (i.e., the primary language (L1) in humans and the primary song (S1) in songbirds). By framing avian “second-song” (S2) learning and use within the human second-language (L2) context, we lay the groundwork for a scientifically-rich dialogue between disciplines. We begin by summarizing basic birdsong research, focusing on how songs are learned and on constraints on learning. We then consider commonalities in vocal learning across humans and birds, in particular the timing and neural mechanisms of learning, variability of input, and variability of outcomes. For S2 and L2 learning outcomes, we address the respective roles of age, entrenchment, and social interactions. We proceed to orient current and future birdsong inquiry around foundational features of human bilingualism: L1 effects on the L2, L1 attrition, and L1<–>L2 switching. Throughout, we highlight characteristics that are shared across species as well as the need for caution in interpreting birdsong research. Thus, from multiple instructive perspectives, our interdisciplinary dialogue sheds light on biological and experiential principles of L2 acquisition that are informed by birdsong research, and leverages well-studied characteristics of bilingualism in order to clarify, contextualize, and further explore S2 learning and use in songbirds.


2021 ◽  
Vol 22 (2) ◽  
pp. 117-126
Author(s):  
Suryati Suryati

Utilizing Youtube as a Learning Media for Pop-Jazz Vocal Course at Music Education Study Program of Institut Seni Indonesia Yogyakarta. The research aims to reveal the learning process of the Pop-Jazz vocal course and the utilization of youtube as an accompaniment in learning the Pop- Jazz vocal course. This research is expected to provide solutions for students who face problems in the learning process of the Pop-Jazz vocal course during the covid-19 pandemic. It is qualitative research with a case study approach. Data collection techniques were carried out through direct observation during the learning process. Furthermore, interviews with teachers and vocal students of Pop-Jazz were conducted to obtain the data. It was a case study of vocal students of Pop-Jazz Intermediate 1 at the Music Education Study Program. The literature studies were carried out to support the data and references. This study shows that the interest in vocal learning of Pop-Jazz at the Music Education Study Program by utilizing youtube as an accompaniment at the pop-jazz vocal course can be increased.


2021 ◽  
Author(s):  
James McGregor ◽  
Abigail Grassler ◽  
Paul I. Jaffe ◽  
Amanda Louise Jacob ◽  
Michael Brainard ◽  
...  

Songbirds and humans share the ability to adaptively modify their vocalizations based on sensory feedback. Prior studies have focused primarily on the role that auditory feedback plays in shaping vocal output throughout life. In contrast, it is unclear whether and how non-auditory information drives vocal plasticity. Here, we first used a reinforcement learning paradigm to establish that non-auditory feedback can drive vocal learning in adult songbirds. We then assessed the role of a songbird basal ganglia-thalamocortical pathway critical to auditory vocal learning in this novel form of vocal plasticity. We found that both this circuit and its dopaminergic inputs are necessary for non-auditory vocal learning, demonstrating that this pathway is not specialized exclusively for auditory-driven vocal learning. The ability of this circuit to use both auditory and non-auditory information to guide vocal learning may reflect a general principle for the neural systems that support vocal plasticity across species.


2021 ◽  
Vol 12 ◽  
Author(s):  
Stefanie Stadler Elmer

From a biological point of view, the singing of songs is based on the human vocal learning capacity. It is universally widespread in all cultures. The transmission of songs is an elementary cultural practice, by which members of the older generations introduce both musico-linguistic rules and affect-regulative means to the younger ones. Traditionally, informal singing in familiar settings primarily subserves affect-regulation goals, whereas formal song transmission is embedded in various normative claims and interests, such as preserving cultural heritage and representing collective and national identity. Songs are vocal acts and abstract models that are densely structured and conform to cultural rules. Songs mirror each generations’ wishes, desires, values, hopes, humor, and stories and rest on unfathomable traditions of our cultural and human history. Framed in the emerging scientific field of didactics, I argue that research on formal song transmission needs to make explicit the norms and rules that govern the relationships between song, teacher, and pupils. I investigate these three didactic components, first, by conceptualizing song as rule-governed in terms of a grammar, with songs for children representing the most elementary musico-linguistic genre. The Children’s Song Grammar presented here is based on syllables as elements and on syntactic rules concerning timing, tonality, and poetic language. It makes it possible to examine and evaluate songs in terms of correctness and well-formedness. Second, the pupils’ learning of a target song is exemplified by an acoustical micro-genetic study that shows how vocalization is gradually adapted to the song model. Third, I address the teachers’ role in song transmission with normative accounts and provide exemplary insights into how we study song teaching empirically. With each new song, a teacher teaches the musico-linguistic rules that constitute the respective genre and conveys related cultural feelings. Formal teaching includes self-evaluation and judgments with respect to educational duties and aesthetic norms. This study of the three-fold didactic process shows song transmission as experiencing shared rule-following that induces feelings of well-formedness. I argue that making the inherent normativity of this process more explicit – here systematically at a descriptive and conceptual level – enhances the scientificity of this research domain.


2021 ◽  
pp. 218-238
Author(s):  
Broderick M.B. Parks ◽  
Andrew G. Horn ◽  
Scott A. MacDougall-Shackleton ◽  
Leslie S. Phillmore
Keyword(s):  

Author(s):  
Andrea Ravignani ◽  
Maxime Garcia

Vocal production learning (VPL) is the experience-driven ability to produce novel vocal signals through imitation or modification of existing vocalizations. A parallel strand of research investigates acoustic allometry, namely how information about body size is conveyed by acoustic signals. Recently, we proposed that deviation from acoustic allometry principles as a result of sexual selection may have been an intermediate step towards the evolution of vocal learning abilities in mammals. Adopting a more hypothesis-neutral stance, here we perform phylogenetic regressions and other analyses further testing a potential link between VPL and being an allometric outlier. We find that multiple species belonging to VPL clades deviate from allometric scaling but in the opposite direction to that expected from size exaggeration mechanisms. In other words, our correlational approach finds an association between VPL and being an allometric outlier. However, the direction of this association, contra our original hypothesis, may indicate that VPL did not necessarily emerge via sexual selection for size exaggeration: VPL clades show higher vocalization frequencies than expected. In addition, our approach allows us to identify species with potential for VPL abilities: we hypothesize that those outliers from acoustic allometry lying above the regression line may be VPL species. Our results may help better understand the cross-species diversity, variability and aetiology of VPL, which among other things is a key underpinning of speech in our species. This article is part of the theme issue ‘Voice modulation: from origin and mechanism to social impact (Part II)’.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yen Yi Loo ◽  
Kristal E. Cain

Birds are our best models to understand vocal learning – a vocal production ability guided by auditory feedback, which includes human language. Among all vocal learners, songbirds have the most diverse life histories, and some aspects of their vocal learning ability are well-known, such as the neural substrates and vocal control centers, through vocal development studies. Currently, species are classified as either vocal learners or non-learners, and a key difference between the two is the development period, extended in learners, but short in non-learners. But this clear dichotomy has been challenged by the vocal learning continuum hypothesis. One way to address this challenge is to examine both learners and canonical non-learners and determine whether their vocal development is dichotomous or falls along a continuum. However, when we examined the existing empirical data we found that surprisingly few species have their vocal development periods documented. Furthermore, we identified multiple biases within previous vocal development studies in birds, including an extremely narrow focus on (1) a few model species, (2) oscines, (3) males, and (4) songs. Consequently, these biases may have led to an incomplete and possibly erroneous conclusions regarding the nature of the relationships between vocal development patterns and vocal learning ability. Diversifying vocal development studies to include a broader range of taxa is urgently needed to advance the field of vocal learning and examine how vocal development patterns might inform our understanding of vocal learning.


Author(s):  
Laura Torres Borda ◽  
Yannick Jadoul ◽  
Heikki Rasilo ◽  
Anna Salazar Casals ◽  
Andrea Ravignani

Vocal plasticity can occur in response to environmental and biological factors, including conspecifics' vocalizations and noise. Pinnipeds are one of the few mammalian groups capable of vocal learning, and are therefore relevant to understanding the evolution of vocal plasticity in humans and other animals. Here, we investigate the vocal plasticity of harbour seals ( Phoca vitulina ), a species with vocal learning abilities observed in adulthood but not puppyhood. To evaluate early mammalian vocal development, we tested 1–3 weeks-old seal pups. We tailored noise playbacks to this species and age to induce seal pups to shift their fundamental frequency ( f 0 ), rather than adapt call amplitude or temporal characteristics. We exposed individual pups to low- and high-intensity bandpass-filtered noise, which spanned—and masked—their typical range of f 0 ; simultaneously, we recorded pups' spontaneous calls. Unlike most mammals, pups modified their vocalizations by lowering their f 0 in response to increased noise. This modulation was precise and adapted to the particular experimental manipulation of the noise condition. In addition, higher levels of noise induced less dispersion around the mean f 0 , suggesting that pups may have actively focused their phonatory efforts to target lower frequencies. Noise did not seem to affect call amplitude. However, one seal showed two characteristics of the Lombard effect known for human speech in noise: significant increase in call amplitude and flattening of spectral tilt. Our relatively low noise levels may have favoured f 0 modulation while inhibiting amplitude adjustments. This lowering of f 0 is unusual, as most animals commonly display no such f 0 shift. Our data represent a relatively rare case in mammalian neonates, and have implications for the evolution of vocal plasticity and vocal learning across species, including humans. This article is part of the theme issue ‘Voice modulation: from origin and mechanism to social impact (Part I)’.


Sign in / Sign up

Export Citation Format

Share Document