scholarly journals Positive and negative prediction error signals to violated expectations of face and place stimuli distinctively activate FFA and PPA

NeuroImage ◽  
2021 ◽  
pp. 118028
Author(s):  
Lena M. Schliephake ◽  
Ima Trempler ◽  
Marlen A. Roehe ◽  
Nina Heins ◽  
Ricarda I. Schubotz
2018 ◽  
Author(s):  
Jonathan E. Robinson ◽  
Will Woods ◽  
Sumie Leung ◽  
Jordy Kaufman ◽  
Michael Breakspear ◽  
...  

AbstractPredictive coding theories of perception suggest the importance of constantly updated internal models of the world in predicting future sensory inputs. One implication of such models is that cortical regions whose function is to resolve particular stimulus attributes should also signal prediction violations with respect to those same stimulus attributes. Previously, through carefully designed experiments, we have demonstrated early-mid latency EEG/MEG prediction-error signals in the dorsal visual stream to violated expectations about stimulus orientation/trajectory, with localisations consistent with cortical areas processing motion and orientation. Here we extend those methods to simultaneously investigate the predictive processes in both dorsal and ventral visual streams. In this MEG study we employed a contextual trajectory paradigm that builds expectations using a series of image presentations. We created expectations about both face orientation and identity, either of which can subsequently be violated. Crucially this paradigm allows us to parametrically test double dissociations between these different types of violations. The study identified double dissociations across the type of violation in the dorsal and ventral visual streams, such that the right fusiform gyrus showed greater evidence of prediction-error signals to Identity violations than to Orientation violations, whereas the left angular gyrus and postcentral gyrus showed the opposite pattern of results. Our results suggest comparable processes for error checking and context updating in high-level expectations instantiated across both perceptual streams. Perceptual prediction-error signalling is initiated in regions associated with the processing of different stimulus properties.Significance StatementVisual processing occurs along ‘what’ and ‘where’ information streams that run, respectively along the ventral and dorsal surface of the posterior brain. Predictive coding models of perception imply prediction-error detection processes that are instantiated at the level where particular stimulus attributes are parsed. This implies that, for instance, when considering face stimuli, signals arising through violated expectations about the person identity of the stimulus should localise to the ventral stream, whereas signals arising through violated expectations about head orientation should localise to the dorsal stream. We test this in a magnetoencephalography source localisation study. The analysis confirmed that prediction-error signals to identity versus head-orientation occur with similar latency, but activate doubly-dissociated brain regions along ventral and dorsal processing streams.


2016 ◽  
Vol 18 (1) ◽  
pp. 23-32 ◽  

Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards—an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less reward than predicted (negative prediction error). The dopamine signal increases nonlinearly with reward value and codes formal economic utility. Drugs of addiction generate, hijack, and amplify the dopamine reward signal and induce exaggerated, uncontrolled dopamine effects on neuronal plasticity. The striatum, amygdala, and frontal cortex also show reward prediction error coding, but only in subpopulations of neurons. Thus, the important concept of reward prediction errors is implemented in neuronal hardware.


2014 ◽  
Vol 26 (9) ◽  
pp. 2111-2127 ◽  
Author(s):  
Christian Bellebaum ◽  
Marco Colosio

Humans can adapt their behavior by learning from the consequences of their own actions or by observing others. Gradual active learning of action–outcome contingencies is accompanied by a shift from feedback- to response-based performance monitoring. This shift is reflected by complementary learning-related changes of two ACC-driven ERP components, the feedback-related negativity (FRN) and the error-related negativity (ERN), which have both been suggested to signal events “worse than expected,” that is, a negative prediction error. Although recent research has identified comparable components for observed behavior and outcomes (observational ERN and FRN), it is as yet unknown, whether these components are similarly modulated by prediction errors and thus also reflect behavioral adaptation. In this study, two groups of 15 participants learned action–outcome contingencies either actively or by observation. In active learners, FRN amplitude for negative feedback decreased and ERN amplitude in response to erroneous actions increased with learning, whereas observational ERN and FRN in observational learners did not exhibit learning-related changes. Learning performance, assessed in test trials without feedback, was comparable between groups, as was the ERN following actively performed errors during test trials. In summary, the results show that action–outcome associations can be learned similarly well actively and by observation. The mechanisms involved appear to differ, with the FRN in active learning reflecting the integration of information about own actions and the accompanying outcomes.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Loreen Hertäg ◽  
Henning Sprekeler

Sensory systems constantly compare external sensory information with internally generated predictions. While neural hallmarks of prediction errors have been found throughout the brain, the circuit-level mechanisms that underlie their computation are still largely unknown. Here, we show that a well-orchestrated interplay of three interneuron types shapes the development and refinement of negative prediction-error neurons in a computational model of mouse primary visual cortex. By balancing excitation and inhibition in multiple pathways, experience-dependent inhibitory plasticity can generate different variants of prediction-error circuits, which can be distinguished by simulated optogenetic experiments. The experience-dependence of the model circuit is consistent with that of negative prediction-error circuits in layer 2/3 of mouse primary visual cortex. Our model makes a range of testable predictions that may shed light on the circuitry underlying the neural computation of prediction errors.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jessica A. Mollick ◽  
Luke J. Chang ◽  
Anjali Krishnan ◽  
Thomas E. Hazy ◽  
Kai A. Krueger ◽  
...  

Compared to our understanding of positive prediction error signals occurring due to unexpected reward outcomes, less is known about the neural circuitry in humans that drives negative prediction errors during omission of expected rewards. While classical learning theories such as Rescorla–Wagner or temporal difference learning suggest that both types of prediction errors result from a simple subtraction, there has been recent evidence suggesting that different brain regions provide input to dopamine neurons which contributes to specific components of this prediction error computation. Here, we focus on the brain regions responding to negative prediction error signals, which has been well-established in animal studies to involve a distinct pathway through the lateral habenula. We examine the activity of this pathway in humans, using a conditioned inhibition paradigm with high-resolution functional MRI. First, participants learned to associate a sensory stimulus with reward delivery. Then, reward delivery was omitted whenever this stimulus was presented simultaneously with a different sensory stimulus, the conditioned inhibitor (CI). Both reward presentation and the reward-predictive cue activated midbrain dopamine regions, insula and orbitofrontal cortex. While we found significant activity at an uncorrected threshold for the CI in the habenula, consistent with our predictions, it did not survive correction for multiple comparisons and awaits further replication. Additionally, the pallidum and putamen regions of the basal ganglia showed modulations of activity for the inhibitor that did not survive the corrected threshold.


NeuroImage ◽  
2011 ◽  
Vol 54 (3) ◽  
pp. 2250-2256 ◽  
Author(s):  
V.I. Spoormaker ◽  
K.C. Andrade ◽  
M.S. Schröter ◽  
A. Sturm ◽  
R. Goya-Maldonado ◽  
...  

Author(s):  
Loreen Hertäg ◽  
Henning Sprekeler

AbstractSensory systems constantly compare external sensory information with internally generated predictions. While neural hallmarks of prediction errors have been found throughout the brain, the circuit-level mechanisms that underlie their computation are still largely unknown. Here, we show that a well-orchestrated interplay of three interneuron types shapes the development and refinement of negative prediction-error neurons in a computational model of mouse primary visual cortex. By balancing excitation and inhibition in multiple pathways, experience-dependent inhibitory plasticity can generate different variants of prediction-error circuits, which can be distinguished by simulated optogenetic experiments. The experience-dependence of the model circuit is consistent with that of negative prediction-error circuits in layer 2/3 of mouse primary visual cortex. Our model makes a range of testable predictions that may shed light on the circuitry underlying the neural computation of prediction errors.


Sign in / Sign up

Export Citation Format

Share Document