angular gyrus
Recently Published Documents


TOTAL DOCUMENTS

492
(FIVE YEARS 260)

H-INDEX

49
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Ting-Kai Leung ◽  
Chia-Wei Li ◽  
Yu-Chun Lo ◽  
Ping-Yen Tsai ◽  
Jia-Yi Wang

Abstract There is still no clear explanation of the process of perceptual consciousness that connects our body with brain. Innovation on the technology of bioceramic has now advanced towards clinical applications, including rehabilitation of brain infarction, therapies of insomnia and migraine. To demonstrate how ‘resonant energy transfer through the bioceramic material with tempo sound and visible light spectrum’ (bioceramic material stimulation, BMS) non-invasively affects perceptual consciousness, we investigated the responses of participants to BMS on perceptual consciousness by questionnaire of subjective descriptions and analyzed resting state fMRI during BMS. There were 61.3% participants who were categorized as positive group with various types of perceptual consciousness. By setting a threshold value at ‘p<0.001’, enhanced connections of ‘parahippocampal gyrus to cerebellar lobule V’ and ‘angular gyrus to precuneus’ were found. However, decreased connection of ‘caudate nucleus to cerebellar lobule VIIb’ was found. We conclude that the most affected brain functions by BMS including somatosensory, audio-visual perception and social cognition. The analysis of functional connectivity during BMS may help us gain more knowledge of consciousness and related division of neuroscience in humans.


2022 ◽  
Vol 12 (1) ◽  
pp. 104
Author(s):  
Sarit Ashkenazi ◽  
Yarden Gliksman ◽  
Avishai Henik

The current study examined whether discrete numerical estimation is based on the same cognitive process as estimation of continuous magnitudes such as weight and time. While the verbal estimation of numerical quantities has a contingent unit of measurement (e.g., how many cookies fit in a cookie jar? _X_ cookies), estimation of time and weight does not (e.g., how much time does it take to fill a bath with water? _X_ minutes/hours/seconds). Therefore, estimation of the latter categories has another level of difficulty, requiring extensive involvement of cognitive control. During a functional magnetic resonance imaging (fMRI) scan, 18 students performed estimations with three estimation categories: number, time, and weight. Estimations elicited activity in multiple brain regions, mainly: (1) visual regions including bilateral lingual gyrus), (2) parietal regions including the left angular gyrus and right supramarginal gyrus, and (3) the frontal regions (cingulate gyrus and the inferior frontal cortex). Continuous magnitude estimations (mostly time) produced different frontal activity than discrete numerical estimations did, demonstrating different profiles of brain activations between discrete numerical estimations and estimations of continuous magnitudes. The activity level in the right middle and inferior frontal gyrus correlated with the tendency to give extreme responses, signifying the importance of the right prefrontal lobe in estimations.


2022 ◽  
Author(s):  
Fatih Yakar ◽  
Pınar Çeltikçi ◽  
Yücel Doğruel ◽  
Emrah Egemen ◽  
Abuzer Güngör

Abstract The angular gyrus (AG) wraps the posterior end of the superior temporal sulcus (STS), so it is considered as a continuation of the superior/middle temporal gyrus and forms the inferior parietal lobule (IPL) with the supramarginal gyrus (SMG). The AG was functionally divided in the literature, but there is no fiber dissection study in this context. This study divided AG into superior (sAG) and inferior (iAG) parts by focusing on STS. Red blue silicone injected eight human cadaveric cerebrums were dissected via the Klingler method focusing on the AG. White matter (WM) tracts identified during dissection were then reconstructed on the Human Connectome Project 1065 individual template for validation. According to this study, superior longitudinal fasciculus (SLF) II and middle longitudinal fasciculus (MdLF) are associated with sAG; the anterior commissure (AC), optic radiation (OR) with iAG; the arcuate fasciculus (AF), inferior frontooccipital fasciculus (IFOF), and tapetum (Tp) with both parts. In cortical parcellation of AG based on STS, sAG and iAG were found to be associated with different fiber tracts. Although it has been shown in previous studies that there are functionally different subunits with AG parcellation, here, for the first time, different functions of the subunits have been revealed with cadaveric dissection and tractography images.


2022 ◽  
Vol 15 ◽  
Author(s):  
Lin Ma ◽  
Tengfei Yuan ◽  
Wei Li ◽  
Lining Guo ◽  
Dan Zhu ◽  
...  

Autism spectrum disorders (ASDs) are a group of heterogeneous neurodevelopmental disorders that are highly heritable and are associated with impaired dynamic functional connectivity (DFC). However, the molecular mechanisms behind DFC alterations remain largely unknown. Eighty-eight patients with ASDs and 87 demographically matched typical controls (TCs) from the Autism Brain Imaging Data Exchange II database were included in this study. A seed-based sliding window approach was then performed to investigate the DFC changes in each of the 29 seeds in 10 classic resting-state functional networks and the whole brain. Subsequently, the relationships between DFC alterations in patients with ASDs and their symptom severity were assessed. Finally, transcription-neuroimaging association analyses were conducted to explore the molecular mechanisms of DFC disruptions in patients with ASDs. Compared with TCs, patients with ASDs showed significantly increased DFC between the right dorsolateral prefrontal cortex (DLPFC) and left fusiform/lingual gyrus, between the DLPFC and the superior temporal gyrus, between the right frontal eye field (FEF) and left middle frontal gyrus, between the FEF and the right angular gyrus, and between the left intraparietal sulcus and the right middle temporal gyrus. Moreover, significant relationships between DFC alterations and symptom severity were observed. Furthermore, the genes associated with DFC changes in ASDs were identified by performing gene-wise across-sample spatial correlation analysis between gene expression extracted from six donors’ brain of the Allen Human Brain Atlas and case-control DFC difference. In enrichment analysis, these genes were enriched for processes associated with synaptic signaling and voltage-gated ion channels and calcium pathways; also, these genes were highly expressed in autistic disorder, chronic alcoholic intoxication and several disorders related to depression. These results not only demonstrated higher DFC in patients with ASDs but also provided novel insight into the molecular mechanisms underlying these alterations.


2022 ◽  
Vol 18 (1) ◽  
Author(s):  
Dazhi Cheng ◽  
Mengyi Li ◽  
Jiaxin Cui ◽  
Li Wang ◽  
Naiyi Wang ◽  
...  

Abstract Background Mathematical expressions mainly include arithmetic (such as 8 − (1 + 3)) and algebra (such as a − (b + c)). Previous studies have shown that both algebraic processing and arithmetic involved the bilateral parietal brain regions. Although previous studies have revealed that algebra was dissociated from arithmetic, the neural bases of the dissociation between algebraic processing and arithmetic is still unclear. The present study uses functional magnetic resonance imaging (fMRI) to identify the specific brain networks for algebraic and arithmetic processing. Methods Using fMRI, this study scanned 30 undergraduates and directly compared the brain activation during algebra and arithmetic. Brain activations, single-trial (item-wise) interindividual correlation and mean-trial interindividual correlation related to algebra processing were compared with those related to arithmetic. The functional connectivity was analyzed by a seed-based region of interest (ROI)-to-ROI analysis. Results Brain activation analyses showed that algebra elicited greater activation in the angular gyrus and arithmetic elicited greater activation in the bilateral supplementary motor area, left insula, and left inferior parietal lobule. Interindividual single-trial brain-behavior correlation revealed significant brain-behavior correlations in the semantic network, including the middle temporal gyri, inferior frontal gyri, dorsomedial prefrontal cortices, and left angular gyrus, for algebra. For arithmetic, the significant brain-behavior correlations were located in the phonological network, including the precentral gyrus and supplementary motor area, and in the visuospatial network, including the bilateral superior parietal lobules. For algebra, significant positive functional connectivity was observed between the visuospatial network and semantic network, whereas for arithmetic, significant positive functional connectivity was observed only between the visuospatial network and phonological network. Conclusion These findings suggest that algebra relies on the semantic network and conversely, arithmetic relies on the phonological and visuospatial networks.


2022 ◽  
Vol 15 ◽  
Author(s):  
Seyed Hani Hojjati ◽  
Abbas Babajani-Feremi ◽  

Background: In recent years, predicting and modeling the progression of Alzheimer’s disease (AD) based on neuropsychological tests has become increasingly appealing in AD research.Objective: In this study, we aimed to predict the neuropsychological scores and investigate the non-linear progression trend of the cognitive declines based on multimodal neuroimaging data.Methods: We utilized unimodal/bimodal neuroimaging measures and a non-linear regression method (based on artificial neural networks) to predict the neuropsychological scores in a large number of subjects (n = 1143), including healthy controls (HC) and patients with mild cognitive impairment non-converter (MCI-NC), mild cognitive impairment converter (MCI-C), and AD. We predicted two neuropsychological scores, i.e., the clinical dementia rating sum of boxes (CDRSB) and Alzheimer’s disease assessment scale cognitive 13 (ADAS13), based on structural magnetic resonance imaging (sMRI) and positron emission tomography (PET) biomarkers.Results: Our results revealed that volumes of the entorhinal cortex and hippocampus and the average fluorodeoxyglucose (FDG)-PET of the angular gyrus, temporal gyrus, and posterior cingulate outperform other neuroimaging features in predicting ADAS13 and CDRSB scores. Compared to a unimodal approach, our results showed that a bimodal approach of integrating the top two neuroimaging features (i.e., the entorhinal volume and the average FDG of the angular gyrus, temporal gyrus, and posterior cingulate) increased the prediction performance of ADAS13 and CDRSB scores in the converting and stable stages of MCI and AD. Finally, a non-linear AD progression trend was modeled to describe the cognitive decline based on neuroimaging biomarkers in different stages of AD.Conclusion: Findings in this study show an association between neuropsychological scores and sMRI and FDG-PET biomarkers from normal aging to severe AD.


2022 ◽  
Vol 15 ◽  
Author(s):  
Ying Feng ◽  
Shishun Fu ◽  
Cheng Li ◽  
Xiaofen Ma ◽  
Yunfan Wu ◽  
...  

Recent studies have shown that the human gut microbiota (GM) plays a critical role in brain function and behavior via the complex microbiome–gut–brain axis. However, knowledge about the underlying relationship between the GM and changes in brain function in patients with chronic insomnia (CI) is still very limited. In this prospective study, 31 CI patients and 30 healthy controls were recruited. Resting-state functional magnetic resonance imaging scans were performed and brain functional alterations in CI patients were evaluated using the regional homogeneity (ReHo) method. We collected fecal samples of CI patients and used 16S rDNA amplicon sequencing to assess the relative abundance (RA) and alpha diversity of the GM. We also performed extensive sleep, mood, and cognitive assessments. Then, we tested for potential associations between the GM profile, ReHo alterations, and neuropsychological changes in CI patients. Our results showed associations between the RA of Lactobacilli, ReHo values in the left fusiform gyrus, and depression scores in CI patients. We also found some bacterial genera related to ReHo values of the right triangular inferior frontal gyrus. In addition, the RA of genus Coprobacter was correlated with ReHo values of the left angular gyrus and with specific cognitive performance. These findings revealed complex relationships between GM, brain function, and behavior in patients with CI.


2022 ◽  
Author(s):  
Juan Pablo Franco ◽  
Peter Bossaerts ◽  
Carsten Murawski

Many everyday tasks require people to solve computationally complex problems. However, little is known about the effects of computational hardness on the neural processes associated with solving such problems. Here, we draw on computational complexity theory to address this issue. We performed an experiment in which participants solved several instances of the 0-1 knapsack problem, a combinatorial optimization problem, while undergoing ultra-high field (7T) functional magnetic resonance imaging (fMRI). Instances varied in two task-independent measures of intrinsic computational hardness: complexity and proof hardness. We characterise a network of brain regions whose activation was correlated with both measures but in distinct ways, including the anterior insula, dorsal anterior cingulate cortex and the intra-parietal sulcus/angular gyrus. Activation and connectivity changed dynamically as a function of complexity and proof hardness, in line with theoretical computational requirements. Overall, our results suggest that computational complexity theory provides a suitable framework to study the effects of computational hardness on the neural processes associated with solving complex cognitive tasks.


2022 ◽  
Vol 12 ◽  
Author(s):  
Qiang Hu ◽  
Huan Huang ◽  
Yuchao Jiang ◽  
Xiong Jiao ◽  
Jie Zhou ◽  
...  

Although modified electroconvulsive therapy (ECT) has been reported to be effective for the treatment of schizophrenia (SCZ), its action mechanism is unclear. To elucidate the underlying ECT mechanisms of SCZ, this study used a longitudinal cohort including 21 SCZ patients receiving only antipsychotics (DSZ group) and 21 SCZ patients receiving a regular course of ECT combining with antipsychotics (MSZ group) for 4 weeks. All patients underwent magnetic resonance imaging (MRI) scans at baseline (t1) and follow-up (t2) time points. A matched healthy control (HC) group included 23 individuals who were only scanned at baseline. Functional connectivity (FC) within the default mode network (DMN) was evaluated before and after ECT. Significant interaction of the group over time was found in FC between angular gyrus (AG) and middle temporal gyrus (MTG). Post-hoc analysis showed a significantly enhanced FC of left AG(AG.L) and right MTG (MTG.R) in the MSZ group relative to the DSZ group. In addition, the right AG (AG.R) showed significantly enhanced FC between MTG.R and left MTG (MTG.L) after ECT in the MSZ group, but no in the DSZ group. In particular, the FCs change in AG.L-MTG.R and AG.R-MTG.R were positively correlated with the Positive and Negative Syndrome Scale (PANSS) negative score reduction. Furthermore, the FC change in AG.L-MTG.R was also positively correlated with the PANSS general psychopathology score reduction. These findings confirmed a potential relationship between ECT inducing hyperconnectivity within DMN and improvements in symptomatology of SCZ, suggesting that ECT controls mental symptoms by regulating the temporoparietal connectivity within DMN.


2022 ◽  
pp. 1-16
Author(s):  
Jamal A. Williams ◽  
Elizabeth H. Margulis ◽  
Samuel A. Nastase ◽  
Janice Chen ◽  
Uri Hasson ◽  
...  

Abstract Recent fMRI studies of event segmentation have found that default mode regions represent high-level event structure during movie watching. In these regions, neural patterns are relatively stable during events and shift at event boundaries. Music, like narratives, contains hierarchical event structure (e.g., sections are composed of phrases). Here, we tested the hypothesis that brain activity patterns in default mode regions reflect the high-level event structure of music. We used fMRI to record brain activity from 25 participants (male and female) as they listened to a continuous playlist of 16 musical excerpts and additionally collected annotations for these excerpts by asking a separate group of participants to mark when meaningful changes occurred in each one. We then identified temporal boundaries between stable patterns of brain activity using a hidden Markov model and compared the location of the model boundaries to the location of the human annotations. We identified multiple brain regions with significant matches to the observer-identified boundaries, including auditory cortex, medial pFC, parietal cortex, and angular gyrus. From these results, we conclude that both higher-order and sensory areas contain information relating to the high-level event structure of music. Moreover, the higher-order areas in this study overlap with areas found in previous studies of event perception in movies and audio narratives, including regions in the default mode network.


Sign in / Sign up

Export Citation Format

Share Document