scholarly journals Unsupervised Natural Visual Experience Rapidly Reshapes Size-Invariant Object Representation in Inferior Temporal Cortex

Neuron ◽  
2010 ◽  
Vol 67 (6) ◽  
pp. 1062-1075 ◽  
Author(s):  
Nuo Li ◽  
James J. DiCarlo
2013 ◽  
Vol 33 (42) ◽  
pp. 16642-16656 ◽  
Author(s):  
T. Sato ◽  
G. Uchida ◽  
M. D. Lescroart ◽  
J. Kitazono ◽  
M. Okada ◽  
...  

2013 ◽  
Vol 25 (5) ◽  
pp. 777-789 ◽  
Author(s):  
Dzmitry A. Kaliukhovich ◽  
Wouter De Baene ◽  
Rufin Vogels

Stimulus repetition produces a decrease of the response in many cortical areas and different modalities. This adaptation is highly prominent in macaque inferior temporal (IT) neurons. Here we ask how these repetition-induced changes in IT responses affect the accuracy by which IT neurons encode objects. This question bears on the functional consequences of adaptation, which are still unclear. We recorded the responses of single IT neurons to sequences of familiar shapes, each shown for 300 msec with an ISI of the same duration. The difference in shape between the two successively presented stimuli,that is, adapter and test, varied parametrically. The discriminability of the test stimuli was reduced for repeated compared with nonrepeated stimuli. In some conditions for which adapter and test shapes differed, the cross-adaptation resulted in an enhanced discriminability. These single cell results were confirmed in a second experiment in which we recorded multiunit spiking activity using a laminar microelectrode in macaque IT. Two familiar stimuli were presented successively for 500 msec each and separated with an ISI of the same duration. Trials consisted either of a repetition of the same stimulus or of their alternation. Small neuronal populations showed decreased classification accuracy for repeated compared with nonrepeated test stimuli, but classification was enhanced for the test compared with adapter stimuli when the test stimulus differed from recently seen stimuli. These findings suggest that short-term, stimulus-specific adaptation in IT supports efficient coding of stimuli that differ from recently seen ones while impairing the coding of repeated stimuli.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Michael J Arcaro ◽  
Margaret S Livingstone

The adult primate visual system comprises a series of hierarchically organized areas. Each cortical area contains a topographic map of visual space, with different areas extracting different kinds of information from the retinal input. Here we asked to what extent the newborn visual system resembles the adult organization. We find that hierarchical, topographic organization is present at birth and therefore constitutes a proto-organization for the entire primate visual system. Even within inferior temporal cortex, this proto-organization was already present, prior to the emergence of category selectivity (e.g., faces or scenes). We propose that this topographic organization provides the scaffolding for the subsequent development of visual cortex that commences at the onset of visual experience


2014 ◽  
Vol 112 (4) ◽  
pp. 856-869 ◽  
Author(s):  
Chia-pei Lin (林佳霈) ◽  
Yueh-peng Chen (陳嶽鵬) ◽  
Chou P. Hung (洪洲伯)

Investigating the relationship between tuning and spike timing is necessary to understand how neuronal populations in anterior visual cortex process complex stimuli. Are tuning and spontaneous spike time synchrony linked by a common spatial structure (do some cells covary more strongly, even in the absence of visual stimulation?), and what is the object coding capability of this structure? Here, we recorded from spiking populations in macaque inferior temporal (IT) cortex under neurolept anesthesia. We report that, although most nearby IT neurons are weakly correlated, neurons with more similar tuning are also more synchronized during spontaneous activity. This link between tuning and synchrony was not simply due to cell separation distance. Instead, it expands on previous reports that neurons along an IT penetration are tuned to similar but slightly different features. This constraint on possible population firing rate patterns was consistent across stimulus sets, including animate vs. inanimate object categories. A classifier trained on this structure was able to generalize category “read-out” to untrained objects using only a few dimensions (a few patterns of site weightings per electrode array). We suggest that tuning and spike synchrony are linked by a common spatial structure that is highly efficient for object representation.


Sign in / Sign up

Export Citation Format

Share Document