scholarly journals A hierarchical, retinotopic proto-organization of the primate visual system at birth

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Michael J Arcaro ◽  
Margaret S Livingstone

The adult primate visual system comprises a series of hierarchically organized areas. Each cortical area contains a topographic map of visual space, with different areas extracting different kinds of information from the retinal input. Here we asked to what extent the newborn visual system resembles the adult organization. We find that hierarchical, topographic organization is present at birth and therefore constitutes a proto-organization for the entire primate visual system. Even within inferior temporal cortex, this proto-organization was already present, prior to the emergence of category selectivity (e.g., faces or scenes). We propose that this topographic organization provides the scaffolding for the subsequent development of visual cortex that commences at the onset of visual experience

2017 ◽  
Author(s):  
Michael J. Arcaro ◽  
Margaret S. Livingstone

ABSTRACTPrimates have specialized domains in inferior temporal (IT) cortex that are responsive to particular image categories. Though IT traditionally has been regarded as lacking retinotopy, several recent studies in monkeys have shown that retinotopic maps extend to face patches along the lower bank of the superior temporal sulcus (STS) in IT cortex. Here, we confirm the presence of visual field maps within and around the lower bank of the STS and extend these prior findings to scene-selective cortex in the ventral-most regions of IT. Within the occipito-temporal sulcus (OTS), we identified two retinotopic areas, OTS1 and OTS2. The polar angle representation of OTS2 was a mirror reversal of the OTS1 representation. These regions contained representations of the contralateral periphery and were selectively active for scene vs. face, body, or object images. The extent of this retinotopy parallels that in humans and shows that the organization of the scene network is preserved across primate species. In addition retinotopic maps were identified in dorsal extrastriate, posterior parietal, and frontal cortex as well as the thalamus, including both the LGN and pulvinar. Taken together, it appears that most, if not all, of the macaque visual system contains organized representations of visual space.SIGNIFICANCE STATEMENTPrimates have specialized domains in inferior temporal (IT) cortex that are responsive to particular image categories. Though retinotopic maps are considered a fundamental organizing principle of posterior visual cortex, IT traditionally has been regarded as lacking retinotopy. Recent imaging studies have demonstrated the presence of several visual field maps within lateral IT. Using neuroimaging, we found multiple representations of visual space within ventral IT cortex of macaques that included scene-selective IT cortex. The scene domains were biased towards the peripheral visual field. These data demonstrate the prevalence of visual field maps throughout the primate visual system, including late stages in the ventral visual hierarchy, and support the idea that domains representing different categories are biased towards different parts of the visual field.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Michael J Arcaro ◽  
Christopher J Honey ◽  
Ryan EB Mruczek ◽  
Sabine Kastner ◽  
Uri Hasson

The human visual system can be divided into over two-dozen distinct areas, each of which contains a topographic map of the visual field. A fundamental question in vision neuroscience is how the visual system integrates information from the environment across different areas. Using neuroimaging, we investigated the spatial pattern of correlated BOLD signal across eight visual areas on data collected during rest conditions and during naturalistic movie viewing. The correlation pattern between areas reflected the underlying receptive field organization with higher correlations between cortical sites containing overlapping representations of visual space. In addition, the correlation pattern reflected the underlying widespread eccentricity organization of visual cortex, in which the highest correlations were observed for cortical sites with iso-eccentricity representations including regions with non-overlapping representations of visual space. This eccentricity-based correlation pattern appears to be part of an intrinsic functional architecture that supports the integration of information across functionally specialized visual areas.


2002 ◽  
Vol 14 (11) ◽  
pp. 2585-2596 ◽  
Author(s):  
Simon M. Stringer ◽  
Edmund T. Rolls

To form view-invariant representations of objects, neurons in the inferior temporal cortex may associate together different views of an object, which tend to occur close together in time under natural viewing conditions. This can be achieved in neuronal network models of this process by using an associative learning rule with a short-term temporal memory trace. It is postulated that within a view, neurons learn representations that enable them to generalize within variations of that view. When three-dimensional (3D) objects are rotated within small angles (up to, e.g., 30 degrees), their surface features undergo geometric distortion due to the change of perspective. In this article, we show how trace learning could solve the problem of in-depth rotation-invariant object recognition by developing representations of the transforms that features undergo when they are on the surfaces of 3D objects. Moreover, we show that having learned how features on 3D objects transform geometrically as the object is rotated in depth, the network can correctly recognize novel 3D variations within a generic view of an object composed of a new combination of previously learned features. These results are demonstrated in simulations of a hierarchical network model (VisNet) of the visual system that show that it can develop representations useful for the recognition of 3D objects by forming perspective-invariant representations to allow generalization within a generic view.


Sign in / Sign up

Export Citation Format

Share Document