scholarly journals Multisensory coding of angular head velocity in the retrosplenial cortex

Neuron ◽  
2021 ◽  
Author(s):  
Sepiedeh Keshavarzi ◽  
Edward F. Bracey ◽  
Richard A. Faville ◽  
Dario Campagner ◽  
Adam L. Tyson ◽  
...  
2021 ◽  
Author(s):  
Sepiedeh Keshavarzi ◽  
Edward Bracey ◽  
Richard Faville ◽  
Dario Campagner ◽  
Adam Tyson ◽  
...  

Cell Reports ◽  
2021 ◽  
Vol 37 (12) ◽  
pp. 110134
Author(s):  
Eivind Hennestad ◽  
Aree Witoelar ◽  
Anna R. Chambers ◽  
Koen Vervaeke

2017 ◽  
Author(s):  
Joshua Bassett ◽  
Tom Wills ◽  
Francesca Cacucci

Head direction (HD) cells signal the orientation of an animal’s head relative to its environment. During post-natal development, HD cells are the earliest spatially modulated neurons in the hippocampal circuit to emerge. However, before eye-opening, HD cell responses in rat pups carry low directional information content and are directionally unstable. Using Bayesian decoding, we characterise this instability and identify its source: despite the directional signal being internally coherent, it consistently under-signals angular head velocity (AHV), incompletely shifting in proportion to head turns. We find evidence that geometric cues (corners) can be used to mitigate this under-signalling, and stabilise the directional signal even before eye-opening. Crucially, even when directional firing cannot be stabilised, ensembles of unstable HD cells show short-timescale (1-10 sec) temporal and spatial couplings consistent with an adult-like HD network, through which activity drifts unanchored to landmark cues. The existence of fixed spatial and temporal offsets across co-recorded cells and of an AHV-responsive signal, even before HD responses become spatially stable, suggests that the HD circuit is assembled through internal, self-organising processes, without reference to external landmarks. The HD network is widely modelled as a continuous attractor whose output is one coherent activity peak, updated during movement by angular head velocity (AHV) signals, and anchored by landmark cues. Our findings present strong evidence for this model, and demonstrate that the required network circuitry is in place and functional during development, independent of reference to landmark information.


2021 ◽  
Author(s):  
Sepiedeh Keshavarzi ◽  
Edward F. Bracey ◽  
Richard A. Faville ◽  
Dario Campagner ◽  
Adam L. Tyson ◽  
...  

The extent to which we successfully navigate the environment depends on our ability to continuously track our heading direction. Neurons that encode the speed and the direction of head turns during navigation, known as angular head velocity (AHV) cells, are fundamental to this process, but the sensory computations underlying their activity remain unknown. By performing chronic single-unit recordings in the retrosplenial cortex (RSP) of the mouse and tracking the activity of individual AHV neurons between freely moving and head-restrained conditions, we find that vestibular inputs dominate AHV signalling. In addition, we discover that self-generated optic flow input onto these neurons increases the gain and signal-to-noise ratio of angular velocity coding during navigation. Psychophysical experiments and neural decoding further reveal that vestibular-visual integration increases the perceptual accuracy of egocentric angular velocity and the fidelity of its representation by RSP ensembles. We propose that while AHV coding is dependent on vestibular cues, it also utilises vision to maximise navigation accuracy in nocturnal and diurnal environments.


1984 ◽  
Vol 45 (5) ◽  
pp. 939-943 ◽  
Author(s):  
J. Grilhé ◽  
N. Junqua ◽  
F. Tranchant ◽  
J. Vergnol

2011 ◽  
Vol 29 (supplement) ◽  
pp. 352-377 ◽  
Author(s):  
Seon Hee Jang ◽  
Frank E Pollick

The study of dance has been helpful to advance our understanding of how human brain networks of action observation are influenced by experience. However previous studies have not examined the effect of extensive visual experience alone: for example, an art critic or dance fan who has a rich experience of watching dance but negligible experience performing dance. To explore the effect of pure visual experience we performed a single experiment using functional Magnetic Resonance Imaging (fMRI) to compare the neural processing of dance actions in 3 groups: a) 14 ballet dancers, b) 10 experienced viewers, c) 12 novices without any extensive dance or viewing experience. Each of the 36 participants viewed short 2-second displays of ballet derived from motion capture of a professional ballerina. These displays represented the ballerina as only points of light at the major joints. We wished to study the action observation network broadly and thus included two different types of display and two different tasks for participants to perform. The two different displays were: a) brief movies of a ballet action and b) frames from the ballet movies with the points of lights connected by lines to show a ballet posture. The two different tasks were: a) passively observe the display and b) imagine performing the action depicted in the display. The two levels of display and task were combined factorially to produce four experimental conditions (observe movie, observe posture, motor imagery of movie, motor imagery of posture). The set of stimuli used in the experiment are available for download after this paper. A random effects ANOVA was performed on brain activity and an effect of experience was obtained in seven different brain areas including: right Temporoparietal Junction (TPJ), left Retrosplenial Cortex (RSC), right Primary Somatosensory Cortex (S1), bilateral Primary Motor Cortex (M1), right Orbitofrontal Cortex (OFC), right Temporal Pole (TP). The patterns of activation were plotted in each of these areas (TPJ, RSC, S1, M1, OFC, TP) to investigate more closely how the effect of experience changed across these areas. For this analysis, novices were treated as baseline and the relative effect of experience examined in the dancer and experienced viewer groups. Interpretation of these results suggests that both visual and motor experience appear equivalent in producing more extensive early processing of dance actions in early stages of representation (TPJ and RSC) and we hypothesise that this could be due to the involvement of autobiographical memory processes. The pattern of results found for dancers in S1 and M1 suggest that their perception of dance actions are enhanced by embodied processes. For example, the S1 results are consistent with claims that this brain area shows mirror properties. The pattern of results found for the experienced viewers in OFC and TP suggests that their perception of dance actions are enhanced by cognitive processes. For example, involving aspects of social cognition and hedonic processing – the experienced viewers find the motor imagery task more pleasant and have richer connections of dance to social memory. While aspects of our interpretation are speculative the core results clearly show common and distinct aspects of how viewing experience and physical experience shape brain responses to watching dance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniel Gomes de Almeida-Filho ◽  
Bruna Del Vechio Koike ◽  
Francesca Billwiller ◽  
Kelly Soares Farias ◽  
Igor Rafael Praxedes de Sales ◽  
...  

AbstractHippocampal (HPC) theta oscillation during post-training rapid eye movement (REM) sleep supports spatial learning. Theta also modulates neuronal and oscillatory activity in the retrosplenial cortex (RSC) during REM sleep. To investigate the relevance of theta-driven interaction between these two regions to memory consolidation, we computed the Granger causality within theta range on electrophysiological data recorded in freely behaving rats during REM sleep, both before and after contextual fear conditioning. We found a training-induced modulation of causality between HPC and RSC that was correlated with memory retrieval 24 h later. Retrieval was proportional to the change in the relative influence RSC exerted upon HPC theta oscillation. Importantly, causality peaked during theta acceleration, in synchrony with phasic REM sleep. Altogether, these results support a role for phasic REM sleep in hippocampo-cortical memory consolidation and suggest that causality modulation between RSC and HPC during REM sleep plays a functional role in that phenomenon.


Sign in / Sign up

Export Citation Format

Share Document