Proteasomal degradation of IRS-2, but not IRS-1 by calcineurin inhibition: Attenuation of insulin-like growth factor-I-induced GSK-3β and ERK pathways in adrenal chromaffin cells

2008 ◽  
Vol 55 (1) ◽  
pp. 71-79 ◽  
Author(s):  
Shinya Satoh ◽  
Toshihiko Yanagita ◽  
Toyoaki Maruta ◽  
Takayuki Nemoto ◽  
Norie Yoshikawa ◽  
...  
2005 ◽  
Vol 186 (3) ◽  
pp. 491-503 ◽  
Author(s):  
Shi-Yan Li ◽  
Cindy X Fang ◽  
Nicholas S Aberle ◽  
Bonnie H Ren ◽  
Asli F Ceylan-Isik ◽  
...  

Insulin-like growth factor-I (IGF-1) ameliorates cardiac dysfunction in diabetes although the mechanism of action remains poorly understood. This study examined the role of PI-3 kinase/Akt/mammalian target of rapamycin (mTOR) and calcineurin pathways in cardiac effects of IGF-1 against glucose toxicity. Adult rat ventricular myocytes were cultured for 8 h with either normal (NG, 5.5 mM) or high (HG, 25.5 mM) glucose, in the presence or absence of IGF-1 (10–500 nM), the PI-3 kinase/Akt inhibitor LY294002 (10 μM), the mTOR inhibitor rapamycin (20 μM) or the calcineurin inhibitors cyclosporin A (5 μM) or FK506 (10 mg/l). Mechanical properties were evaluated using an IonOptix MyoCam system. HG depressed peak shortening (PS), reduced maximal velocity of shortening/relengthening (± dl/dt) and prolongs time-to-90% relengthening (TR90), which were abolished by IGF-1 (100 and 500 nM). Interestingly, the IGF-1-elicited protective effect against HG was nullified by either LY294002 or rapamycin, but not by cyclosporine A or FK506. None of the inhibitors affected cell mechanics. Western blot analysis indicated that HG and IGF-1 stimulated phosphorylation of Akt and mTOR. HG also activated p70s6k and suppressed GSK-3β phosphorylation. However, the HG-induced alterations in phosphorylation of Akt, mTOR, p70s6k and GSK-3β were significantly reversed by IGF-1. Protein expression of Akt, mTOR, p70s6k, GSK-3β, SERCA2a and phospholamban was unaffected by HG, IGF-1 or rapamycin. Rapamycin significantly enhanced Akt phosphorylation whereas it inhibited mTOR phosphorylation. Collectively, our data suggest that IGF-1 may provide cardiac protection against glucose in part through a PI-3 kinase/Akt/mTOR/ p70s6k-dependent and calcineurin-independent pathway.


Sign in / Sign up

Export Citation Format

Share Document