Biophysical properties of acid-sensing ion channels (ASICs)

2015 ◽  
Vol 94 ◽  
pp. 9-18 ◽  
Author(s):  
Stefan Gründer ◽  
Michael Pusch
2006 ◽  
pp. S100-S101
Author(s):  
S P H Alexander ◽  
A Mathie ◽  
J A Peters

2015 ◽  
Vol 53 (08) ◽  
Author(s):  
A Shcherbokova ◽  
H Abdel-Aziz ◽  
O Kelber ◽  
K Nieber ◽  
G Ulrich-Merzenich

Author(s):  
Stefan Gründer

Acid-sensing ion channels (ASICs) are proton-gated Na+ channels. Being almost ubiquitously present in neurons of the vertebrate nervous system, their precise function remained obscure for a long time. Various animal toxins that bind to ASICs with high affinity and specificity have been tremendously helpful in uncovering the role of ASICs. We now know that they contribute to synaptic transmission at excitatory synapses as well as to sensing metabolic acidosis and nociception. Moreover, detailed characterization of mouse models uncovered an unanticipated role of ASICs in disorders of the nervous system like stroke, multiple sclerosis, and pathological pain. This review provides an overview on the expression, structure, and pharmacology of ASICs plus a summary of what is known and what is still unknown about their physiological functions and their roles in diseases.


2012 ◽  
Vol 426 (4) ◽  
pp. 511-515 ◽  
Author(s):  
Elena Petroff ◽  
Vladislav Snitsarev ◽  
Huiyu Gong ◽  
Francois M. Abboud

2003 ◽  
Vol 2 (1) ◽  
pp. 181-190 ◽  
Author(s):  
Stephen K. Roberts

ABSTRACT In contrast to animal and plant cells, very little is known of ion channel function in fungal physiology. The life cycle of most fungi depends on the “filamentous” polarized growth of hyphal cells; however, no ion channels have been cloned from filamentous fungi and comparatively few preliminary recordings of ion channel activity have been made. In an attempt to gain an insight into the role of ion channels in fungal hyphal physiology, a homolog of the yeast K+ channel (ScTOK1) was cloned from the filamentous fungus, Neurospora crassa. The patch clamp technique was used to investigate the biophysical properties of the N. crassa K+ channel (NcTOKA) after heterologous expression of NcTOKA in yeast. NcTOKA mediated mainly time-dependent outward whole-cell currents, and the reversal potential of these currents indicated that it conducted K+ efflux. NcTOKA channel gating was sensitive to extracellular K+ such that channel activation was dependent on the reversal potential for K+. However, expression of NcTOKA was able to overcome the K+ auxotrophy of a yeast mutant missing the K+ uptake transporters TRK1 and TRK2, suggesting that NcTOKA also mediated K+ influx. Consistent with this, close inspection of NcTOKA-mediated currents revealed small inward K+ currents at potentials negative of EK. NcTOKA single-channel activity was characterized by rapid flickering between the open and closed states with a unitary conductance of 16 pS. NcTOKA was effectively blocked by extracellular Ca2+, verapamil, quinine, and TEA+ but was insensitive to Cs+, 4-aminopyridine, and glibenclamide. The physiological significance of NcTOKA is discussed in the context of its biophysical properties.


2016 ◽  
Vol 173 (18) ◽  
pp. 2671-2701 ◽  
Author(s):  
Emilie Boscardin ◽  
Omar Alijevic ◽  
Edith Hummler ◽  
Simona Frateschi ◽  
Stephan Kellenberger

Sign in / Sign up

Export Citation Format

Share Document