A- and D-type potassium currents regulate axonal action potential repolarization in midbrain dopamine neurons

2021 ◽  
pp. 108399
Author(s):  
Yujie Xiao ◽  
Jun Yang ◽  
Wenliang Ji ◽  
Quansheng He ◽  
Lanqun Mao ◽  
...  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Kanako Otomo ◽  
Jessica Perkins ◽  
Anand Kulkarni ◽  
Strahinja Stojanovic ◽  
Jochen Roeper ◽  
...  

AbstractThe in vivo firing patterns of ventral midbrain dopamine neurons are controlled by afferent and intrinsic activity to generate sensory cue and prediction error signals that are essential for reward-based learning. Given the absence of in vivo intracellular recordings during the last three decades, the subthreshold membrane potential events that cause changes in dopamine neuron firing patterns remain unknown. To address this, we established in vivo whole-cell recordings and obtained over 100 spontaneously active, immunocytochemically-defined midbrain dopamine neurons in isoflurane-anaesthetized adult mice. We identified a repertoire of subthreshold membrane potential signatures associated with distinct in vivo firing patterns. Dopamine neuron activity in vivo deviated from single-spike pacemaking by phasic increases in firing rate via two qualitatively distinct biophysical mechanisms: 1) a prolonged hyperpolarization preceding rebound bursts, accompanied by a hyperpolarizing shift in action potential threshold; and 2) a transient depolarization leading to high-frequency plateau bursts, associated with a depolarizing shift in action potential threshold. Our findings define a mechanistic framework for the biophysical implementation of dopamine neuron firing patterns in the intact brain.


2020 ◽  
Author(s):  
Kanako Otomo ◽  
Jessica Perkins ◽  
Anand Kulkarni ◽  
Strahinja Stojanovic ◽  
Jochen Roeper ◽  
...  

AbstractThe firing pattern of ventral midbrain dopamine neurons is controlled by afferent and intrinsic activity to generate prediction error signals that are essential for reward-based learning. Given the absence of intracellular in vivo recordings in the last three decades, the subthreshold membrane potential events that cause changes in dopamine neuron firing patterns remain unknown. By establishing stable in vivo whole-cell recordings of >100 spontaneously active midbrain dopamine neurons in anaesthetized mice, we identified the repertoire of subthreshold membrane potential signatures associated with distinct in vivo firing patterns. We demonstrate that dopamine neuron in vivo activity deviates from a single spike pacemaker pattern by eliciting transient increases in firing rate generated by at least two diametrically opposing biophysical mechanisms: a transient depolarization resulting in high frequency plateau bursts associated with a reactive, depolarizing shift in action potential threshold; and a prolonged hyperpolarization preceding slower rebound bursts characterized by a predictive, hyperpolarizing shift in action potential threshold. Our findings therefore illustrate a framework for the biophysical implementation of prediction error and sensory cue coding in dopamine neurons by tuning action potential threshold dynamics.


2021 ◽  
Vol 202 ◽  
pp. 173104
Author(s):  
Hui Shen ◽  
Kai Chen ◽  
Rosa Anna M. Marino ◽  
Ross A. McDevitt ◽  
Zheng-Xiong Xi

Sign in / Sign up

Export Citation Format

Share Document