transgenic mouse models
Recently Published Documents


TOTAL DOCUMENTS

729
(FIVE YEARS 84)

H-INDEX

63
(FIVE YEARS 7)

Author(s):  
Li-Fang Hsu ◽  
Bei-En Chang ◽  
Kuo-Jung Tseng ◽  
Chih-Ching Liao ◽  
Shu-Chun Tsai ◽  
...  

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Marius Piepke ◽  
Bettina H. Clausen ◽  
Peter Ludewig ◽  
Jonas H. Vienhues ◽  
Tanja Bedke ◽  
...  

Abstract Background Lymphocytes have dichotomous functions in ischemic stroke. Regulatory T cells are protective, while IL-17A from innate lymphocytes promotes the infarct growth. With recent advances of T cell-subtype specific transgenic mouse models it now has become possible to study the complex interplay of T cell subpopulations in ischemic stroke. Methods In a murine model of experimental stroke we analyzed the effects of IL-10 on the functional outcome for up to 14 days post-ischemia and defined the source of IL-10 in ischemic brains based on immunohistochemistry, flow cytometry, and bone-marrow chimeric mice. We used neutralizing IL-17A antibodies, intrathecal IL-10 injections, and transgenic mouse models which harbor a deletion of the IL-10R on distinct T cell subpopulations to further explore the interplay between IL-10 and IL-17A pathways in the ischemic brain. Results We demonstrate that IL-10 deficient mice exhibit significantly increased infarct sizes on days 3 and 7 and enlarged brain atrophy and impaired neurological outcome on day 14 following tMCAO. In ischemic brains IL-10 producing immune cells included regulatory T cells, macrophages, and microglia. Neutralization of IL-17A following stroke reversed the worse outcome in IL-10 deficient mice and intracerebral treatment with recombinant IL-10 revealed that IL-10 controlled IL-17A positive lymphocytes in ischemic brains. Importantly, IL-10 acted differentially on αβ and γδ T cells. IL-17A producing CD4+ αβ T cells were directly controlled via their IL-10-receptor (IL-10R), whereas IL-10 by itself had no direct effect on the IL-17A production in γδ T cells. The control of the IL-17A production in γδ T cells depended on an intact IL10R signaling in regulatory T cells (Tregs). Conclusions Taken together, our data indicate a key function of IL-10 in restricting the detrimental IL-17A-signaling in stroke and further supports that IL-17A is a therapeutic opportunity for stroke treatment.


Endocrinology ◽  
2021 ◽  
Author(s):  
Nour Abou Nader ◽  
Alexandre Boyer

Abstract The adrenal cortex is an endocrine organ organized into concentric zones that are specialized to produce specific steroid hormones essential for life. The development and maintenance of the adrenal cortex are complex, as a fetal adrenal is first formed from a common primordium with the gonads, followed by its separation in a distinct primordium, the invasion of the adrenal primordium by neural crest-derived cells to form the medulla, and finally its encapsulation. The fetal cortex is then replaced by a definitive cortex, which will establish zonation and be maintained throughout life by regeneration relying on the proliferation, centripetal migration and differentiation of several stem/progenitor cell populations whose activities are sex-specific. Here, we will highlight the advances made, using transgenic mouse models, to delineate the molecular mechanisms regulating these processes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amy Keerie ◽  
Heledd Brown-Wright ◽  
Isaac Kirkland ◽  
Andrew Grierson ◽  
James J. P. Alix ◽  
...  

AbstractGLP-1 receptor agonists used for the treatment of diabetes, have shown some neuroprotective effects in cellular and animal models of Alzheimer’s disease (AD) and Parkinson’s disease (PD). There are currently few studies investigating GLP-1 receptor agonists in the treatment of ALS, where these neuroprotective effects may be beneficial. Here we investigate the effects of liraglutide, a GLP-1 receptor agonist, in two well characterised transgenic mouse models of ALS (SOD1G93A and TDP-43Q331K) to determine if liraglutide could be a potential treatment in ALS patients. Doses of liraglutide previously shown to have efficacy in AD and PD mouse models were used. Behavioural testing was carried out to ascertain the effect of liraglutide on disease progression. Immunohistochemical analysis of tissue was used to determine any neuroprotective effects on the CNS. We found that liraglutide dosed animals showed no significant differences in disease progression when compared to vehicle dosed animals in either the SOD1G93A or TDP-43Q331K mouse models of ALS. We also observed no changes in motor neuron counts or glial activation in lumbar spinal cords of liraglutide treated mice compared to vehicle dosed mice. Overall, we found no evidence to support clinical evaluation of liraglutide as a potential candidate for the treatment of ALS.


Heliyon ◽  
2021 ◽  
pp. e07808
Author(s):  
Jo B. Henningsen ◽  
Rana Soylu-Kucharz ◽  
Maria Björkqvist ◽  
Åsa Petersén

2021 ◽  
Author(s):  
Marius Piepke ◽  
Bettina H. Clausen ◽  
Peter Ludewig ◽  
Jonas H. Vienhues ◽  
Tanja Bedke ◽  
...  

Abstract Background: Lymphocytes have dichotomous functions in ischemic stroke. Regulatory T cells are protective, while IL-17A from innate lymphocytes promotes the infarcts growth. With recent advances of T cell-subtype specific transgenic mouse models it now has become possible to study the complex interplay of T cell subpopulations in ischemic stroke.Methods: In a murine model of experimental stroke we analyzed the effects of IL-10 on the functional outcome for up to 14 days post-ischemia and defined the source of IL-10 in ischemic brains based on immunohistochemistry, flow cytometry, and bone marrow chimeric mice. We used neutralizing IL-17A antibodies, intrathecal IL-10 injections, and transgenic mouse models which harbor a deletion of the IL-10R on distinct T cell subpopulations to further explore the interplay between IL-10 and IL-17A pathways in the ischemic brain. Results: We demonstrate that IL-10 deficient mice exhibit significantly increased infarct sizes on days three and seven and enlarged brain atrophy and impaired neurological outcome on day fourteen following tMCAO. In ischemic brains IL-10 producing immune cells included regulatory T cells, macrophages, and microglia. Neutralization of IL-17A following stroke reversed the worse outcome in IL-10 deficient mice and intracerebral treatment with recombinant IL-10 revealed that IL-10 controlled IL-17A positive lymphocytes in ischemic brains. Importantly, IL-10 acted differentially on αβ and γδ T cells. IL-17A producing CD4+ αβ T cells were directly controlled via their IL-10-receptor (IL-10R), whereas IL-10 by itself had no direct effect on the IL-17A production in γδ T cells. The control of the IL-17A production in γδ T cells depended on an intact IL10R signaling in regulatory T cells (Tregs). Conclusions: Taken together, our data indicate a key function of IL-10 in restricting the detrimental IL-17A-signaling in stroke and further supports that IL-17A is a therapeutic opportunity for stroke treatment.


2021 ◽  
Vol 11 (13) ◽  
pp. 5878
Author(s):  
A-Hyeon Lee ◽  
Sung-Chul Hong ◽  
Inwook Park ◽  
Soljee Yoon ◽  
YoungSoo Kim ◽  
...  

The visualization of misfolded Aβ peptides by using fluorescence chemical dyes is very important in Alzheimer’s disease (AD) diagnosis. Here, we describe the fluorescent substance, fucoxanthin, which detects Aβ aggregates in the brain of AD transgenic mouse models. We found that fucoxanthin from the microalgae Phaeodactylum tricornutum has fluorescent excitation and emission wavelengths without any interference for Aβ interaction. Thus, we applied it to monitor Aβ aggregation in AD transgenic mouse models. Aβ plaques were visualized using fucoxanthin in the brain tissue of APP/PS1 and 5×FAD mice by histological staining with different staining methods. By comparing fucoxanthin-positive and thioflavin S-positive stained regions in the brains, we found that they are colocalized and that fucoxanthin can detect Aβ aggregates. Our finding suggests that fucoxanthin from P. tricornutum can be a new Aβ fluorescent imaging reagent in AD diagnosis.


2021 ◽  
Author(s):  
Angelina T. Regua ◽  
Austin Arrigo ◽  
Daniel Doheny ◽  
Grace L. Wong ◽  
Hui-Wen Lo

Sign in / Sign up

Export Citation Format

Share Document