Corticotropin releasing factor increases in brown adipose tissue thermogenesis and heart rate through dorsomedial hypothalamus and medullary raphe pallidus

Neuroscience ◽  
2006 ◽  
Vol 140 (2) ◽  
pp. 711-721 ◽  
Author(s):  
M. Cerri ◽  
S.F. Morrison
Author(s):  
Ellen Paula Santos da Conceição Furber ◽  
Clarissa M.D. Mota ◽  
Edward Veytsman ◽  
Shaun F. Morrison ◽  
Christopher J. Madden

Systemic administration of dopamine (DA) receptor agonists leads to falls in body temperature. However, the central thermoregulatory pathways modulated by DA have not been fully elucidated. Here we identified a source and site of action contributing to DA's hypothermic action by inhibition of brown adipose tissue (BAT) thermogenesis. Nanoinjection of the type 2 and type 3 DA receptor (D2R/D3R) agonist, 7-OH-DPAT, in the rostral raphe pallidus area (rRPa) inhibits the sympathetic activation of BAT evoked by cold exposure or by direct activation of NMDA receptors in the rRPa. Blockade of D2R/D3R in the rRPa with nanoinjection of SB-277011A increases BAT thermogenesis, consistent with a tonic release of DA in the rRPa contributing to inhibition of BAT thermogenesis. Accordingly, D2R are expressed in cold-activated and serotonergic neurons in the rRPa and anatomical tracing studies revealed that neurons in the posterior hypothalamus (PH) are a source of dopaminergic input to the rRPa. Disinhibitory activation of PH neurons with nanoinjection of gabazine inhibits BAT thermogenesis, which is reduced by pre-treatment of the rRPa with SB-277011A. In conclusion, the rRPa, the site of sympathetic premotor neurons for BAT, receives a tonically-active, dopaminergic input from the PH that suppresses BAT thermogenesis.


2010 ◽  
Vol 299 (1) ◽  
pp. R277-R290 ◽  
Author(s):  
Wei-Hua Cao ◽  
Christopher J. Madden ◽  
Shaun F. Morrison

Neurons in the ventrolateral medulla (VLM) and in the nucleus tractus solitarius (NTS) play important roles in the regulation of cardiovascular and other autonomic functions. In the present study, we demonstrate an inhibition of brown adipose tissue (BAT) thermogenesis evoked by activation of neurons in the VLM, as well as by neurons in the intermediate NTS, of chloralose/urethane-anesthetized, artificially ventilated rats. Activation of neurons in either rostral VLM or caudal VLM with N-methyl-d-aspartate (12 nmol) reversed the cold-evoked increase in BAT sympathetic nerve activity (SNA), BAT temperature, and end-expired CO2. Disinhibition of neurons in either VLM or NTS with the GABAA receptor antagonist, bicuculline (30 pmol), reversed the increases in BAT SNA, BAT temperature, and end-expired CO2 that were elicited 1) by cold defense; 2) during the febrile model of nanoinjection of prostaglandin E2 into the medial preoptic area; 3) by activation of neurons in the dorsomedial hypothalamus or in the rostral raphe pallidus (rRPa); or 4) by the μ-opioid receptor agonist fentanyl. Combined, but not separate, inhibitions of neurons in the VLM and in the NTS, with the GABAA receptor agonist, muscimol (120 pmol/site), produced increases in BAT SNA, BAT temperature, and expired CO2, which were reversed by nanoinjection of glycine (30 nmol) into the rRPa. These findings suggest that VLM and NTS contain neurons whose activation inhibits BAT thermogenesis, that these neurons receive GABAergic inputs that are active under these experimental conditions, and that neurons in both sites contribute to the tonic inhibition of sympathetic premotor neuronal activity in the rRPa that maintains a low level of BAT thermogenesis in normothermic conditions.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ellen Paula Santos da Conceição ◽  
Shaun F. Morrison ◽  
Georgina Cano ◽  
Pierfrancesco Chiavetta ◽  
Domenico Tupone

Abstract Within the central neural circuitry for thermoregulation, the balance between excitatory and inhibitory inputs to the dorsomedial hypothalamus (DMH) determines the level of activation of brown adipose tissue (BAT) thermogenesis. We employed neuroanatomical and in vivo electrophysiological techniques to identify a source of excitation to thermogenesis-promoting neurons in the DMH that is required for cold defense and fever. Inhibition of median preoptic area (MnPO) neurons blocked the BAT thermogenic responses during both PGE2-induced fever and cold exposure. Disinhibition or direct activation of MnPO neurons induced a BAT thermogenic response in warm rats. Blockade of ionotropic glutamate receptors in the DMH, or brain transection rostral to DMH, blocked cold-evoked or NMDA in MnPO-evoked BAT thermogenesis. RNAscope technique identified a glutamatergic population of MnPO neurons that projects to the DMH and expresses c-Fos following cold exposure. These discoveries relative to the glutamatergic drive to BAT sympathoexcitatory neurons in DMH augment our understanding of the central thermoregulatory circuitry in non-torpid mammals. Our data will contribute to the development of novel therapeutic approaches to induce therapeutic hypothermia for treating drug-resistant fever, and for improving glucose and energy homeostasis.


Sign in / Sign up

Export Citation Format

Share Document