brown adipose tissue
Recently Published Documents


TOTAL DOCUMENTS

3993
(FIVE YEARS 734)

H-INDEX

119
(FIVE YEARS 13)

JCI Insight ◽  
2022 ◽  
Author(s):  
Jessica D. Kepple ◽  
Jessie M. Barra ◽  
Martin E. Young ◽  
Chad S. Hunter ◽  
Hubert M. Tse

eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Xi Cao ◽  
Tingting Shi ◽  
Chuanhai Zhang ◽  
Wanzhu Jin ◽  
Lini Song ◽  
...  

Identification of key regulators of energy homeostasis holds important therapeutic promise for metabolic disorders, such as obesity and diabetes. ACE2 cleaves angiotensin II (Ang II) to generate Ang-(1-7) which acts mainly through the Mas1 receptor. Here, we identify ACE2 pathway as a critical regulator in the maintenance of thermogenesis and energy expenditure. We found that ACE2 is highly expressed in brown adipose tissue (BAT) and that cold stimulation increases ACE2 and Ang-(1-7) levels in BAT and serum. Ace2 knockout mice (Ace2-/y) and Mas1 knockout mice (Mas1-/-) displayed impaired thermogenesis. Mice transplanted with brown adipose tissue from Mas1-/- display metabolic abnormalities consistent with those seen in the Ace2 and Mas1 knockout mice. In contrast, impaired thermogenesis of Leprdb/db obese diabetic mice and high-fat diet-induced obese mice were ameliorated by overexpression of Ace2 or continuous infusion of Ang-(1-7). Activation of ACE2 pathway was associated with improvement of metabolic parameters, including blood glucose, lipids and energy expenditure in multiple animal models. Consistently, ACE2 pathway remarkably enhanced the browning of white adipose tissue. Mechanistically, we showed that ACE2 pathway activated Akt/FoxO1 and PKA pathway, leading to induction of UCP1 and activation of mitochondrial function. Our data propose that adaptive thermogenesis requires regulation of ACE2 pathway and highlight novel potential therapeutic targets for the treatment of metabolic disorders.


Author(s):  
Felix T. Yang ◽  
Kristin I. Stanford

Abstract Purpose of Review This review highlights aspects of brown adipose tissue (BAT) communication with other organ systems and how BAT-to-tissue cross-talk could help elucidate future obesity treatments. Recent Findings Until recently, research on BAT has focused mainly on its thermogenic activity. New research has identified an endocrine/paracrine function of BAT and determined that many BAT-derived molecules, termed “batokines,” affect the physiology of a variety of organ systems and cell types. Batokines encompass a variety of signaling molecules including peptides, metabolites, lipids, or microRNAs. Recent studies have noted significant effects of batokines on physiology as it relates whole-body metabolism and cardiac function. This review will discuss batokines and other BAT processes that affect the liver, cardiovascular system, skeletal muscle, immune cells, and brown and white adipose tissue. Summary Brown adipose tissue has a crucial secretory function that plays a key role in systemic physiology.


2022 ◽  
Vol 14 ◽  
Author(s):  
Benjamin Deckmyn ◽  
Dorothée Domenger ◽  
Chloé Blondel ◽  
Sarah Ducastel ◽  
Emilie Nicolas ◽  
...  

The nuclear bile acid (BA) receptor farnesoid X receptor (FXR) is a major regulator of metabolic/energy homeostasis in peripheral organs. Indeed, enterohepatic-expressed FXR controls metabolic processes (BA, glucose and lipid metabolism, fat mass, body weight). The central nervous system (CNS) regulates energy homeostasis in close interaction with peripheral organs. While FXR has been reported to be expressed in the brain, its function has not been studied so far. We studied the role of FXR in brain control of energy homeostasis by treating wild-type and FXR-deficient mice by intracerebroventricular (ICV) injection with the reference FXR agonist GW4064. Here we show that pharmacological activation of brain FXR modifies energy homeostasis by affecting brown adipose tissue (BAT) function. Brain FXR activation decreases the rate-limiting enzyme in catecholamine synthesis, tyrosine hydroxylase (TH), and consequently the sympathetic tone. FXR activation acts by inhibiting hypothalamic PKA-CREB induction of TH expression. These findings identify a function of brain FXR in the control of energy homeostasis and shed new light on the complex control of energy homeostasis by BA through FXR.


2022 ◽  
pp. 112612
Author(s):  
Tamires Duarte Afonso Serdan ◽  
Laureane Nunes Mais ◽  
Joice Naiara Bertaglia Pereira ◽  
Luiz Eduardo Rodrigues ◽  
Amanda Lins Alecrim ◽  
...  

Radiographics ◽  
2022 ◽  
Vol 42 (1) ◽  
pp. E14-E15
Author(s):  
Sara Sheikhbahaei ◽  
Ciléin Kearns ◽  
Jolie Jean ◽  
Tushar Garg

2022 ◽  
Author(s):  
Ruilin Li ◽  
Zihan Xue ◽  
Shuqin Li ◽  
Jingna Zhou ◽  
Junyu Liu ◽  
...  

Mulberry leaf polysaccharides have anti-obesity effects, and their mechanism likely involves an integrated role of white adipose browning, BAT activity induction and gut microbiota modulation.


Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 23
Author(s):  
Andrea Weinzierl ◽  
Yves Harder ◽  
Daniel Schmauss ◽  
Emmanuel Ampofo ◽  
Michael D. Menger ◽  
...  

Fat grafting is a frequently applied procedure in plastic surgery for volume reconstruction. Moreover, the transplantation of white adipose tissue (WAT) and brown adipose tissue (BAT) increasingly gains interest in preclinical research for the treatment of obesity-related metabolic defects. Therefore, we herein directly compared the vascularization capacity and survival of WAT and BAT grafts. For this purpose, size-matched grafts isolated from the inguinal WAT pad and the interscapular BAT depot of C57BL/6N donor mice were syngeneically transplanted into the dorsal skinfold chamber of recipient animals. The vascularization and survival of the grafts were analyzed by means of intravital fluorescence microscopy, histology, and immunohistochemistry over an observation period of 14 days. WAT grafts showed an identical microvascular architecture and functional microvessel density as native WAT. In contrast, BAT grafts developed an erratic microvasculature with a significantly lower functional microvessel density when compared to native BAT. Accordingly, they also contained a markedly lower number of CD31-positive microvessels, which was associated with a massive loss of perilipin-positive adipocytes. These findings indicate that in contrast to WAT grafts, BAT grafts exhibit an impaired vascularization capacity and survival, which may be due to their higher metabolic demand. Hence, future studies should focus on the establishment of strategies to improve the engraftment of transplanted BAT.


Sign in / Sign up

Export Citation Format

Share Document