scholarly journals Heterosynaptic crosstalk: GABA-glutamate metabotropic receptors interactively control glutamate release in solitary tract nucleus

Neuroscience ◽  
2011 ◽  
Vol 174 ◽  
pp. 1-9 ◽  
Author(s):  
L.G. Fernandes ◽  
Y.-H. Jin ◽  
M.C. Andresen
2008 ◽  
Vol 295 (5) ◽  
pp. H2032-H2042 ◽  
Author(s):  
Michael C. Andresen ◽  
James H. Peters

Cranial nerve visceral afferents enter the brain stem to synapse on neurons within the solitary tract nucleus (NTS). The broad heterogeneity of both visceral afferents and NTS neurons makes understanding afferent synaptic transmission particularly challenging. To study a specific subgroup of second-order neurons in medial NTS, we anterogradely labeled arterial baroreceptor afferents of the aortic depressor nerve (ADN) with lipophilic fluorescent tracer (i.e., ADN+) and measured synaptic responses to solitary tract (ST) activation recorded from dye-identified neurons in medial NTS in horizontal brain stem slices. Every ADN+ NTS neuron received constant-latency ST-evoked excitatory postsynaptic currents (EPSCs) (jitter <192 μs, SD of latency). Stimulus-recruitment profiles showed single thresholds and no suprathreshold recruitment, findings consistent with EPSCs arising from a single, branched afferent axon. Frequency-dependent depression of ADN+ EPSCs averaged ∼70% for five shocks at 50 Hz, but single-shock failure rates did not exceed 4%. Whether adjacent ADN− or those from unlabeled animals, other second-order NTS neurons (jitters <200 μs) had ST transmission properties indistinguishable from ADN+. Capsaicin (CAP; 100 nM) blocked ST transmission in some neurons. CAP-sensitive ST-EPSCs were smaller and failed over five times more frequently than CAP-resistant responses, whether ADN+ or from unlabeled animals. Variance-mean analysis of ST-EPSCs suggested uniformly high probabilities for quantal glutamate release across second-order neurons. While amplitude differences may reflect different numbers of contacts, higher frequency-dependent failure rates in CAP-sensitive ST-EPSCs may arise from subtype-specific differences in afferent axon properties. Thus afferent transmission within medial NTS differed by axon class (e.g., CAP sensitive) but was indistinguishable by source of axon (e.g., baroreceptor vs. nonbaroreceptor).


2000 ◽  
Vol 83 (5) ◽  
pp. 2519-2525 ◽  
Author(s):  
D. Ieuan Evans ◽  
Roland S. G. Jones ◽  
Gavin Woodhall

The role of group III metabotropic glutamate receptors (mGluRs) in modulating excitatory synaptic transmission was investigated in the rat entorhinal cortex (EC) in vitro. AMPA receptor-mediated excitatory postsynaptic currents (EPSCs) were recorded in the whole cell configuration of the patch-clamp technique from visually identified neurons in layers V and II. In layer V, bath application of the specific group III mGluR agonist L(+)-2-amino-4-phosphonobutyric acid (L-AP4, 500 μM) resulted in a marked facilitation of both spontaneous and activity-independent “miniature” (s/mEPSC) event frequency. The facilitatory effect of L-AP4 (100 μM) on sEPSC frequency prevailed in the presence ofdl−2-amino-5-phosphonopentanoic acid (100 μM) but was abolished by the group III antagonist (RS)-cyclopropyl-4-phosphonophenylglycine (20 μM). These data confirmed that group III mGluRs, and not N-methyl-d-aspartate (NMDA) receptors were involved in the response to L-AP4. Bath application of the specific mGluR4a agonist (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid (20 μM) also had a facilitatory effect on sEPSC frequency, suggesting involvement of mGluR4a. In layer II neurons, L-AP4 caused a reduction in sEPSC frequency but did not affect mEPSCs recorded in the presence of tetrodotoxin. These findings suggest that a group III mGluR with mGluR4a-like pharmacology is involved in modulating synaptic transmission in layer V cells of the EC. The effect on mEPSCs suggests that this receptor is located presynaptically and that its activation results in a direct facilitation of glutamate release. This novel facilitatory effect is specific to layer V and, to our knowledge, is the first report of a direct facilitatory action of group III mGluRs on synaptic transmission. In layer II, L-AP4 had an inhibitory effect on glutamate release similar to that reported in other brain regions.


Sign in / Sign up

Export Citation Format

Share Document