cb1 receptors
Recently Published Documents


TOTAL DOCUMENTS

480
(FIVE YEARS 60)

H-INDEX

72
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Anil Kumar Kalvala ◽  
Arvind Bagde ◽  
Peggy Arthur ◽  
Sunil Kumar Surapaneni ◽  
Ramesh Nimma ◽  
...  

Abstract The purpose of this study was to investigate the neuroprotective effects of phytocannabinoids, synthetic cannabidiol (CBD) and tetrahydrocannabivarin (THCV) and their combination on taxol induced peripheral neuropathy (PIPN) in mice. Briefly, six groups of C57BL/6J mice (n = 6) were used. PTX (8 mg/kg/day, i.p.) was given to the mice on days 1, 3, 5, and 7 to induce neuropathy. Mice were evaluated for their behavioral parameters and also at the end of the study, DRG collected from the animals were subjected to RNA sequence and westernblot analysis. Further, immunocytochemistry and mitochondrial functional assays were performed on cultured DRGs derived from SD rats. The combination of CBD and THCV improved thermal and mechanical neurobehavioral symptoms in mice by two folds as compared to individual treatments. KEGG (RNA Sequencing) identified P38-MAPK, AMPK, and PI3K-AKT pathways as potential CBD and THCV therapeutic targets. In PTX-treated animals, the expression of p-AMPK, SIRT1, NRF2, HO1, SOD2, and catalase was significantly reduced (p<0.001), whereas the expression of PI3K, p-AKT, p-P38 MAP kinase, BAX, TGF-, NLRP3 inflammasome, and caspase 3 was significantly increased (p<0.001) when compared to control group. In reversing these protein expressions, combination therapy outperformed single therapies. CBD and THCV treatment increased AMPK, Catalase, and Complex I expression while decreasing mitochondrial superoxides in DRG primary cultures. In mice and DRG primary cultures, WAY100135 and rimonabant inhibited the effects of CBD and THCV by blocking 5 HT1A and CB1 receptors. In conclusion, entourage effect of CBD and THCV combination against PIPN appears to protect neurons in mice by modulating 5HT1A and CB1 receptors, respectively.


Author(s):  
Anamaria Falcão Pereira ◽  
Mario Roberto Pontes Lisboa ◽  
Bruno Wesley de Freitas Alves ◽  
Cristiane Maria Pereira da Silva ◽  
Diego Bernarde Souza Dias ◽  
...  

Author(s):  
Liting Deng ◽  
Katie Viray ◽  
Simar Singh ◽  
Ben Cravatt ◽  
Nephi Stella
Keyword(s):  

2021 ◽  
Vol 28 (4) ◽  
pp. 457-470
Author(s):  
Mansour Haddad

Cannabinoids are abundant signaling compounds; their influence predominantly arises via engagement with the principal two G-protein-coupled cannabinoid receptors, CB1 and CB2. One suggested theory is that cannabinoids regulate a variety of physiological processes within the cells of skeletal muscle. Earlier publications have indicated that expression of CB1 receptor mRNA and protein has been recognized within myotubes and tissues of skeletal muscle from both murines and humans, thus representing a potentially significant pathway which plays a role in the control of skeletal muscular activities. The part played by CB1 receptor activation or inhibition with respect to these functions and relevant to targets in the periphery, especially skeletal muscle, is not fully delineated. Thus, the aim of the current research was to explore the influence of CB1 receptor stimulation and inhibition on downstream signaling of the nuclear receptor, NR4A, which regulates the immediate impacts of arachidonyl-2’-chloroethylamide (ACEA) and/or rimonabant in the cells of skeletal muscle. Murine L6 skeletal muscle cells were used in order to clarify additional possible molecular signaling pathways which contribute to alterations in the CB1 receptor. Skeletal muscle cells have often been used; it is well-documented that they express cannabinoid receptors. Quantitative real-time probe-based polymerase chain reaction (qRT-PCR) assays are deployed in order to assess the gene expression characteristics of CB1 receptor signaling. In the current work, it is demonstrated that skeletal muscle cells exhibit functional expression of CB1 receptors. This can be deduced from the qRT-PCR assays; triggering CB1 receptors amplifies both NR4A1 and NR4A3 mRNA gene expression. The impact of ACEA is inhibited by the selective CB1 receptor antagonist, rimonabant. The present research demonstrated that 10 nM of ACEA notably amplified mRNA gene expression of NR4A1 and NR4A3; this effect was suppressed by the addition of 100 nM rimonabant. Furthermore, the CB1 receptor antagonist led to the downregulation of mRNA gene expression of NR4A1, NR4A2 and NR4A3. In conclusion, in skeletal muscle, CB1 receptors were recognized to be important moderators of NR4A1 and NR4A3 mRNA gene expression; these actions may have possible clinical benefits. Thus, in skeletal muscle cells, a possible physiological expression of CB1 receptors was identified. It is as yet unknown whether these CB1 receptors contribute to pathways underlying skeletal muscle biological function and disease processes. Further research is required to fully delineate their role(s).


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5352
Author(s):  
Alex Straiker ◽  
Sierra Wilson ◽  
Wesley Corey ◽  
Michaela Dvorakova ◽  
Taryn Bosquez ◽  
...  

Cannabis contains more than 100 phytocannabinoids. Most of these remain poorly characterized, particularly in neurons. We tested a panel of five phytocannabinoids—cannabichromene (CBC), cannabidiolic acid (CBDA), cannabidivarin (CBDV), cannabidivarinic acid (CBDVA), and Δ9-tetrahydrocannabivarin (THCV) in two neuronal models, autaptic hippocampal neurons and dorsal root ganglion (DRG) neurons. Autaptic neurons expressed a form of CB1-dependent retrograde plasticity while DRGs expressed a variety of transient receptor potential (TRP) channels. CBC, CBDA, and CBDVA had little or no effect on neuronal cannabinoid signaling. CBDV and THCV differentially inhibited cannabinoid signaling. THCV inhibited CB1 receptors presynaptically while CBDV acted post-synaptically, perhaps by inhibiting 2-AG production. None of the compounds elicited a consistent DRG response. In summary, we find that two of five ‘minor’ phytocannabinoids tested antagonized CB1-based signaling in a neuronal model, but with very different mechanisms. Our findings highlight the diversity of potential actions of phytocannabinoids and the importance of fully evaluating these compounds in neuronal models.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 5089
Author(s):  
Luis Santos-Molina ◽  
Alexa Herrerias ◽  
Charles N. Zawatsky ◽  
Ozge Gunduz-Cinar ◽  
Resat Cinar ◽  
...  

Alcohol consumption is associated with gut dysbiosis, increased intestinal permeability, endotoxemia, and a cascade that leads to persistent systemic inflammation, alcoholic liver disease, and other ailments. Craving for alcohol and its consequences depends, among other things, on the endocannabinoid system. We have analyzed the relative role of central vs. peripheral cannabinoid CB1 receptors (CB1R) using a “two-bottle” as well as a “drinking in the dark” paradigm in mice. The globally acting CB1R antagonist rimonabant and the non-brain penetrant CB1R antagonist JD5037 inhibited voluntary alcohol intake upon systemic but not upon intracerebroventricular administration in doses that elicited anxiogenic-like behavior and blocked CB1R-induced hypothermia and catalepsy. The peripherally restricted hybrid CB1R antagonist/iNOS inhibitor S-MRI-1867 was also effective in reducing alcohol consumption after oral gavage, while its R enantiomer (CB1R inactive/iNOS inhibitor) was not. The two MRI-1867 enantiomers were equally effective in inhibiting an alcohol-induced increase in portal blood endotoxin concentration that was caused by increased gut permeability. We conclude that (i) activation of peripheral CB1R plays a dominant role in promoting alcohol intake and (ii) the iNOS inhibitory function of MRI-1867 helps in mitigating the alcohol-induced increase in endotoxemia.


2021 ◽  
pp. JN-RM-0851-21
Author(s):  
Jian Liang ◽  
Dennis LH Kruijssen ◽  
Aniek CJ Verschuuren ◽  
Bas JB Voesenek ◽  
Feline FW Benavides ◽  
...  
Keyword(s):  

Author(s):  
Jayarami Reddy Medapati ◽  
Deepthi Rapaka ◽  
Veera Raghavulu Bitra ◽  
Santhosh Kumar Ranajit ◽  
Girija Sankar Guntuku ◽  
...  

Abstract Background The endocannabinoid CB1 receptor is known to have protective effects in kidney disease. The aim of the present study is to evaluate the potential agonistic and antagonistic actions and to determine the renoprotective potential of CB1 receptors in diabetic nephropathy. The present work investigates the possible role of CB1 receptors in the pathogenesis of diabetes-induced nephropathy. Streptozotocin (STZ) (55 mg/kg, i.p., once) is administered to uninephrectomised rats for induction of experimental diabetes mellitus. The CB1 agonist (oleamide) and CB1 antagonist (AM6545) treatment were initiated in diabetic rats after 1 week of STZ administration and were given for 24 weeks. Results The progress in diabetic nephropathy is estimated biochemically by measuring serum creatinine (1.28±0.03) (p < 0.005), blood urea nitrogen (67.6± 2.10) (p < 0.001), urinary microprotein (74.62± 3.47) (p < 0.005) and urinary albuminuria (28.31±1.17) (p < 0.0001). Renal inflammation was assessed by estimating serum levels of tumor necrosis factor alpha (75.69±1.51) (p < 0.001) and transforming growth factor beta (8.73±0.31) (p < 0.001). Renal morphological changes were assessed by estimating renal hypertrophy (7.38± 0.26) (p < 0.005) and renal collagen content (10.42± 0.48) (p < 0.001). Conclusions From the above findings, it can be said that diabetes-induced nephropathy may be associated with overexpression of CB1 receptors and blockade of CB1 receptors might be beneficial in ameliorating the diabetes-induced nephropathy. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document