Changes of motor-cortical oscillations associated with motor learning

Neuroscience ◽  
2014 ◽  
Vol 275 ◽  
pp. 47-53 ◽  
Author(s):  
B. Pollok ◽  
D. Latz ◽  
V. Krause ◽  
M. Butz ◽  
A. Schnitzler
2010 ◽  
Vol 206 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Ron Levy ◽  
Andres M. Lozano ◽  
Anthony E. Lang ◽  
Jonathan O. Dostrovsky

2019 ◽  
Author(s):  
Steffen B. E. Wolff ◽  
Raymond Ko ◽  
Bence P. Ölveczky

AbstractThe acquisition and execution of learned motor sequences are mediated by a distributed motor network, spanning cortical and subcortical brain areas. The sensorimotor striatum is an important cog in this network, yet how its two main inputs, from motor cortex and thalamus respectively, contribute to its role in motor learning and execution remains largely unknown. To address this, we trained rats in a task that produces highly stereotyped and idiosyncratic motor sequences. We found that motor cortical input to the sensorimotor striatum is critical for the learning process, but after the behaviors were consolidated, this corticostriatal pathway became dispensable. Functional silencing of striatal-projecting thalamic neurons, however, disrupted the execution of the learned motor sequences, causing rats to revert to behaviors produced early in learning and preventing them from re-learning the task. These results show that the sensorimotor striatum is a conduit through which motor cortical inputs can drive experience-dependent changes in subcortical motor circuits, likely at thalamostriatal synapses.


2019 ◽  
Vol 122 (4) ◽  
pp. 1397-1405 ◽  
Author(s):  
Hiroki Ohashi ◽  
Paul L. Gribble ◽  
David J. Ostry

Motor learning is associated with plasticity in both motor and somatosensory cortex. It is known from animal studies that tetanic stimulation to each of these areas individually induces long-term potentiation in its counterpart. In this context it is possible that changes in motor cortex contribute to somatosensory change and that changes in somatosensory cortex are involved in changes in motor areas of the brain. It is also possible that learning-related plasticity occurs in these areas independently. To better understand the relative contribution to human motor learning of motor cortical and somatosensory plasticity, we assessed the time course of changes in primary somatosensory and motor cortex excitability during motor skill learning. Learning was assessed using a force production task in which a target force profile varied from one trial to the next. The excitability of primary somatosensory cortex was measured using somatosensory evoked potentials in response to median nerve stimulation. The excitability of primary motor cortex was measured using motor evoked potentials elicited by single-pulse transcranial magnetic stimulation. These two measures were interleaved with blocks of motor learning trials. We found that the earliest changes in cortical excitability during learning occurred in somatosensory cortical responses, and these changes preceded changes in motor cortical excitability. Changes in somatosensory evoked potentials were correlated with behavioral measures of learning. Changes in motor evoked potentials were not. These findings indicate that plasticity in somatosensory cortex occurs as a part of the earliest stages of motor learning, before changes in motor cortex are observed. NEW & NOTEWORTHY We tracked somatosensory and motor cortical excitability during motor skill acquisition. Changes in both motor cortical and somatosensory excitability were observed during learning; however, the earliest changes were in somatosensory cortex, not motor cortex. Moreover, the earliest changes in somatosensory cortical excitability predict the extent of subsequent learning; those in motor cortex do not. This is consistent with the idea that plasticity in somatosensory cortex coincides with the earliest stages of human motor learning.


NeuroImage ◽  
2011 ◽  
Vol 55 (2) ◽  
pp. 616-621 ◽  
Author(s):  
W. Gaetz ◽  
J.C. Edgar ◽  
D.J. Wang ◽  
T.P.L. Roberts

2017 ◽  
Vol 128 (9) ◽  
pp. e247 ◽  
Author(s):  
Magdalena Nowak ◽  
Emily Hinson ◽  
Freek Van Ede ◽  
Alek Pogosyan ◽  
Andrea Guerra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document