motor circuits
Recently Published Documents


TOTAL DOCUMENTS

235
(FIVE YEARS 80)

H-INDEX

31
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Yue Li ◽  
Edmund Hollis

Currently, therapeutic intervention for spinal cord injury is limited. Many approaches rely on strengthening the remaining substrate and driving recovery through rehabilitative training. As compared to learning novel compensatory strategies, rehabilitation focuses on restoring movements lost to injury. Whether rehabilitation of previously learned movements after spinal cord injury requires the molecular mechanisms of motor learning, or if it engages previously trained motor circuits without requiring novel learning. Our findings implicate the latter mechanism, as we demonstrate that nicotinic acetylcholine signaling is required for motor learning but is dispensable for the recovery of previously trained motor behavior after cervical spinal cord injury.


2021 ◽  
Author(s):  
Katrin Gerstmann ◽  
Nina Jurcic ◽  
Severine Kunz ◽  
Nicolas Wanaverbecq ◽  
Niccolo Zampieri

From swimming to walking and flying, animals have evolved specific locomotor strategies to thrive in different habitats. All types of locomotion depend on integration of motor commands and sensory information to generate precise movements. Cerebrospinal fluid-contacting neurons (CSF-cN) constitute a vertebrate sensory system that monitors CSF composition and flow. In fish, CSF-cN modulate swimming activity in response to changes in pH and bending of the spinal cord, yet their role in higher vertebrates remains unknown. We used mouse genetics to study their function in quadrupedal locomotion and found that CSF-cN are directly integrated into spinal motor circuits by forming connections with motor neurons and premotor interneurons. Elimination of CSF-cN selectively perturbs the accuracy of foot placement required for skilled movements at the balance beam and horizontal ladder. These results identify an important role for mouse CSF-cN in adaptive motor control and indicate that this sensory system evolved a novel function from lower vertebrates to accommodate the biomechanical requirements of terrestrial locomotion.


Author(s):  
Nedjeljka Ivica ◽  
Luciano Censoni ◽  
Joel Sjöbom ◽  
Ulrike Richter ◽  
Per Petersson

It has been hypothesized that in order to perform sensorimotor transformations efficiently, somatosensory information being fed back to a particular motor circuit is organized in accordance with the mechanical loading patterns of the skin that results from the motor activity generated by that circuit. Rearrangements of sensory information to different motor circuits could in this respect constitute a key component of sensorimotor learning. We have here explored if the organization of tactile input from the plantar forepaw of the rat to cortical and striatal circuits is affected by a period of extensive sensorimotor training in a skilled reaching and grasping task. Our data show that the representation of tactile stimuli in terms of both temporal and spatial response patterns changes as a consequence of the training, and that spatial changes particularly involve the primary motor cortex. Based on the observed reorganization, we propose that reshaping of the spatiotemporal representation of the tactile afference to motor circuits is an integral component of the learning process that underlies skill-acquisition in reaching and grasping.


2021 ◽  
Vol 15 ◽  
Author(s):  
Sydney Popsuj ◽  
Alberto Stolfi

Conserved transcription factors termed “terminal selectors” regulate neuronal sub-type specification and differentiation through combinatorial transcriptional regulation of terminal differentiation genes. The unique combinations of terminal differentiation gene products in turn contribute to the functional identities of each neuron. One well-characterized terminal selector is COE (Collier/Olf/Ebf), which has been shown to activate cholinergic gene batteries in C. elegans motor neurons. However, its functions in other metazoans, particularly chordates, is less clear. Here we show that the sole COE ortholog in the non-vertebrate chordate Ciona robusta, Ebf, controls the expression of the cholinergic locus VAChT/ChAT in a single dorsal interneuron of the larval Motor Ganglion, which is presumed to be homologous to the vertebrate spinal cord. We propose that, while the function of Ebf as a regulator of cholinergic neuron identity conserved across bilaterians, its exact role may have diverged in different cholinergic neuron subtypes (e.g., interneurons vs. motor neurons) in chordate-specific motor circuits.


2021 ◽  
Author(s):  
Sonja A Zolnoski ◽  
Emily L Heckman ◽  
Chris Q Doe ◽  
Sarah D Ackerman

Early stages of the devastating neurodegenerative disease amyotrophic lateral sclerosis (ALS) are characterized by motor neuron hyperexcitability. During this phase, peri-synaptic astrocytes are neuroprotective. When reactive, loss of wild-type astrocyte functions results in excitotoxicity. How astrocytes stabilize motor circuit function in early-stage ALS is poorly understood. Here, we used Drosophila motor neurons to define the role of astrocyte-motor neuron metabolic coupling in a model of ALS: astrocyte knockdown of the ALS-causing gene tbph/TARDBP. In wild-type, astrocyte mitochondria were dynamically trafficked towards active motor dendrites/synapses to meet local metabolic demand. Knockdown of tbph in astrocytes resulted in motor neuron hyperexcitability, reminiscent of early-stage ALS, which was met with a compensatory accumulation of astrocyte mitochondria near motor dendrites/synapses. Finally, we blocked mitochondria-synapse association in tbph knockdown animals and observed locomotor deficits and synapse loss. Thus, synapse-associated astrocyte mitochondria stabilize motor circuits to prevent the transition from hyperexcitability to excitotoxicity.


2021 ◽  
pp. 1-19
Author(s):  
Joana Leitão ◽  
Maya Burckhardt ◽  
Patrik Vuilleumier

Abstract Motivation is an important feature of emotion. By driving approach to positive events and promoting avoidance of negative stimuli, motivation drives adaptive actions and goal pursuit. The amygdala has been associated with a variety of affective processes, particularly the appraisal of stimulus valence that is assumed to play a crucial role in the generation of approach and avoidance behaviors. Here, we measured amygdala functional connectivity patterns while participants played a video game manipulating goal conduciveness through the presence of good, neutral, or bad monsters. As expected, good versus bad monsters elicited opposing motivated behaviors, whereby good monsters induced more approach and bad monsters triggered more avoidance. These opposing directional behaviors were paralleled by increased connectivity between the amygdala and medial brain areas, such as the OFC and posterior cingulate, for good relative to bad, and between amygdala and caudate for bad relative to good monsters. Moreover, in both conditions, individual connectivity strength between the amygdala and medial prefrontal regions was positively correlated with brain scores from a latent component representing efficient goal pursuit, which was identified by a partial least square analysis determining the multivariate association between amygdala connectivity and behavioral motivation indices during gameplay. At the brain level, this latent component highlighted a widespread pattern of amygdala connectivity, including a dorsal frontoparietal network and motor areas. These results suggest that amygdala-medial prefrontal interactions captured the overall subjective relevance of ongoing events, which could consecutively drive the engagement of attentional, executive, and motor circuits necessary for implementing successful goal-pursuit, irrespective of approach or avoidance directions.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Shankar Ramachandran ◽  
Navonil Banerjee ◽  
Raja Bhattacharya ◽  
Michele L Lemons ◽  
Jeremy Florman ◽  
...  

Neuromodulators promote adaptive behaviors that are often complex and involve concerted activity changes across circuits that are often not physically connected. It is not well understood how neuromodulatory systems accomplish these tasks. Here we show that the C. elegans NLP-12 neuropeptide system shapes responses to food availability by modulating the activity of head and body wall motor neurons through alternate G-protein coupled receptor (GPCR) targets, CKR-1 and CKR-2. We show ckr-2 deletion reduces body bend depth during movement under basal conditions. We demonstrate CKR-1 is a functional NLP-12 receptor and define its expression in the nervous system. In contrast to basal locomotion, biased CKR-1 GPCR stimulation of head motor neurons promotes turning during local searching. Deletion of ckr-1 reduces head neuron activity and diminishes turning while specific ckr-1 overexpression or head neuron activation promote turning. Thus, our studies suggest locomotor responses to changing food availability are regulated through conditional NLP-12 stimulation of head or body wall motor circuits.


2021 ◽  
Author(s):  
Admir Resulaj ◽  
Jeannette Wu ◽  
Mitra J.Z. Hartmann ◽  
Paul Feinstein ◽  
Harris Phillip Zeigler

Although peripheral deafferentation studies have demonstrated a critical role for trigeminal afference in modulating the orosensorimotor control of eating and drinking, the central trigeminal pathways mediating that control, as well as the timescale of control, remain to be elucidated. In rodents, three ascending somatosensory pathways process and relay orofacial mechanosensory input: the lemniscal, paralemniscal, and extralemniscal. Two of these pathways (the lemniscal and extralemniscal) exhibit highly structured topographic representations of the orofacial sensory surface, as exemplified by the one-to-one somatotopic mapping between vibrissae on the animals’ face and barrelettes in brainstem, barreloids in thalamus, and barrels in cortex. Here we use the Prrxl1 knockout mouse model to investigate ingestive behavior deficits associated with disruption of the lemniscal pathway. The Prrxl1 deletion disrupts somatotopic patterning and axonal projections throughout the lemniscal pathway but spares patterning in the extralemniscal nucleus. Our data reveal an imprecise and inefficient ingestive phenotype with deficits that span timescales from milliseconds to months, tightly linking trigeminal input with ingestion, from moment-to-moment consummatory to long term appetitive control. We suggest that ordered assembly of trigeminal sensory information along the lemniscal pathway is critical for the rapid and precise modulation of motor circuits driving eating and drinking action sequences.


2021 ◽  
Vol 15 ◽  
Author(s):  
Clayton Gordy ◽  
Hans Straka

Vestibular endorgans in the vertebrate inner ear form the principal sensors for head orientation and motion in space. Following the evolutionary appearance of these organs in pre-vertebrate ancestors, specific sensory epithelial patches, such as the utricle, which is sensitive to linear acceleration and orientation of the head with respect to earth’s gravity, have become particularly important for constant postural stabilization. This influence operates through descending neuronal populations with evolutionarily conserved hindbrain origins that directly and indirectly control spinal motoneurons of axial and limb muscles. During embryogenesis and early post-embryonic periods, bilateral otolith signals contribute to the formation of symmetric skeletal elements through a balanced activation of axial muscles. This role has been validated by removal of otolith signals on one side during a specific developmental period in Xenopus laevis tadpoles. This intervention causes severe scoliotic deformations that remain permanent and extend into adulthood. Accordingly, the functional influence of weight-bearing otoconia, likely on utricular hair cells and resultant afferent discharge, represents a mechanism to ensure a symmetric muscle tonus essential for establishing a normal body shape. Such an impact is presumably occurring within a critical period that is curtailed by the functional completion of central vestibulo-motor circuits and by the modifiability of skeletal elements before ossification of the bones. Thus, bilateral otolith organs and their associated sensitivity to head orientation and linear accelerations are not only indispensable for real time postural stabilization during motion in space but also serve as a guidance for the ontogenetic establishment of a symmetric body.


Sign in / Sign up

Export Citation Format

Share Document