A novel role of fragile X mental retardation protein in pre-mRNA alternative splicing through RNA-binding protein 14

Neuroscience ◽  
2017 ◽  
Vol 349 ◽  
pp. 64-75 ◽  
Author(s):  
Lin-Tao Zhou ◽  
Shun-Hua Ye ◽  
Hai-Xuan Yang ◽  
Yong-Ting Zhou ◽  
Qi-Hua Zhao ◽  
...  
Author(s):  
Claudia Bagni ◽  
Eric Klann

Chapter 8 discusses how Fragile X syndrome (FXS) is caused by the absence of the RNA-binding protein fragile X mental retardation protein (FMRP). FMRP is highly expressed in the brain and gonads, the two organs mainly affected in patients with the syndrome. Functionally, FMRP belongs to the family of RNA-binding proteins, shuttling from the nucleus to the cytoplasm, and, as shown for other RNA-binding proteins, forms large messenger ribonucleoparticles.


2020 ◽  
Vol 12 (4) ◽  
pp. 903-916 ◽  
Author(s):  
Cassandra Malecki ◽  
Brett D. Hambly ◽  
Richmond W. Jeremy ◽  
Elizabeth N. Robertson

2007 ◽  
Vol 7 ◽  
pp. 146-154 ◽  
Author(s):  
Abrar Qurashi ◽  
Shuang Chang ◽  
Peng Jin

Deficits in cognitive functions lead to mental retardation (MR). Understanding the genetic basis of inherited MR has provided insights into the pathogenesis of MR. Fragile X syndrome is one of the most common forms of inherited MR, caused by the loss of functional Fragile X Mental Retardation Protein (FMRP).MicroRNAs (miRNAs) are endogenous, single-stranded RNAs between 18 and 25 nucleotides in length, which have been implicated in diversified biological pathways. Recent studies have linked the miRNA pathway to fragile X syndrome. Here we review the role of the miRNA pathway in fragile X syndrome and discuss its implication in MR in general.


Author(s):  
Ying Yang ◽  
Yang Geng ◽  
Dongyun Jiang ◽  
Lin Ning ◽  
Hyung Joon Kim ◽  
...  

Fragile X syndrome (FXS) is the leading monogenic cause of autism and intellectual disability. FXS is caused by loss of expression of fragile X mental retardation protein (FMRP), an RNA-binding protein that regulates translation of numerous mRNA targets, some of which are present at synapses. While protein synthesis deficits have long been postulated as an etiology of FXS, how FMRP loss affects distributions of newly synthesized proteins is unknown. Here we investigated the role of FMRP in regulating expression of new copies of the synaptic protein PSD95 in an in vitro model of synaptic plasticity. We find that local BDNF application promotes persistent accumulation of new PSD95 at stimulated synapses and dendrites of cultured neurons, and that this accumulation is absent in FMRP-deficient mouse neurons. New PSD95 accumulation at sites of BDNF stimulation does not require known mechanisms regulating FMRP–mRNA interactions but instead requires the PI3K-mTORC1-S6K1 pathway. Surprisingly, in FMRP-deficient neurons, BDNF induction of new PSD95 accumulation can be restored by mTORC1-S6K1 blockade, suggesting that constitutively high mTORC1-S6K1 activity occludes PSD95 regulation by BDNF and that alternative pathways exist to mediate induction when mTORC1-S6K1 is inhibited. This study provides direct evidence for deficits in local protein synthesis and accumulation of newly synthesized protein in response to local stimulation in FXS, and supports mTORC1-S6K1 pathway inhibition as a potential therapeutic approach for FXS.


2007 ◽  
Vol 27 (51) ◽  
pp. 13958-13967 ◽  
Author(s):  
T. J. Price ◽  
M. H. Rashid ◽  
M. Millecamps ◽  
R. Sanoja ◽  
J. M. Entrena ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document