Role of beta-catenin and endocannabinoids in the nucleus accumbens in extinction in rats exposed to shock and reminders

Neuroscience ◽  
2017 ◽  
Vol 357 ◽  
pp. 285-294 ◽  
Author(s):  
Nachshon Korem ◽  
Rachel Lange ◽  
Cecilia J. Hillard ◽  
Irit Akirav
2021 ◽  
Vol 22 (14) ◽  
pp. 7287
Author(s):  
Masaki Tanaka ◽  
Shunji Yamada ◽  
Yoshihisa Watanabe

Neuropeptide Y (NPY), an abundant peptide in the central nervous system, is expressed in neurons of various regions throughout the brain. The physiological and behavioral effects of NPY are mainly mediated through Y1, Y2, and Y5 receptor subtypes, which are expressed in regions regulating food intake, fear and anxiety, learning and memory, depression, and posttraumatic stress. In particular, the nucleus accumbens (NAc) has one of the highest NPY concentrations in the brain. In this review, we summarize the role of NPY in the NAc. NPY is expressed principally in medium-sized aspiny neurons, and numerous NPY immunoreactive fibers are observed in the NAc. Alterations in NPY expression under certain conditions through intra-NAc injections of NPY or receptor agonists/antagonists revealed NPY to be involved in the characteristic functions of the NAc, such as alcohol intake and drug addiction. In addition, control of mesolimbic dopaminergic release via NPY receptors may take part in these functions. NPY in the NAc also participates in fat intake and emotional behavior. Accumbal NPY neurons and fibers may exert physiological and pathophysiological actions partly through neuroendocrine mechanisms and the autonomic nervous system.


Author(s):  
Wenjin Xu ◽  
Qingxiao Hong ◽  
Zi Lin ◽  
Hong Ma ◽  
Weisheng Chen ◽  
...  
Keyword(s):  

Author(s):  
Elena Fountzilas ◽  
Razelle Kurzrock ◽  
Henry Hiep Vo ◽  
Apostolia-Maria Tsimberidou

Abstract The development of checkpoint blockade immunotherapy has transformed the medical oncology armamentarium. But, despite its favorable impact on clinical outcomes, immunotherapy benefits only a subset of patients, and a substantial proportion of these individuals eventually manifest resistance. Serious immune-related adverse events and hyper-progression have also been reported. It is therefore essential to understand the molecular mechanisms and identify the drivers of therapeutic response and resistance. In this review, we provide an overview of the current and emerging clinically relevant genomic biomarkers implicated in checkpoint blockade outcome. U.S. Food and Drug Administration–approved molecular biomarkers of immunotherapy response include mismatch repair deficiency/microsatellite instability and tumor mutational burden ≥10 mutations/megabase. Investigational genomic-associated biomarkers for immunotherapy response include alterations of the following genes/associated pathways: chromatin remodeling (ARID1A, PBRM1, SMARCA4, SMARCB1, BAP1), major histocompatibility complex, specific (e.g., ultraviolet, APOBEC) mutational signatures, T-cell receptor repertoire, PDL1, POLE/POLD1, and neo-antigens produced by the mutanome; those potentially associated with resistance include β2-microglobulin, EGFR, Keap1, JAK1/JAK2/interferon-gamma signaling, MDM2, PTEN, STK11, and Wnt/Beta-catenin pathway alterations. Prospective clinical trials are needed to assess the role of a composite of these biomarkers in order to optimize the implementation of precision immunotherapy in patient care.


1991 ◽  
Vol 26 (1) ◽  
pp. 23-27 ◽  
Author(s):  
G.E. Ploeger ◽  
A.P.M. Willemen ◽  
A.R. Cools

Sign in / Sign up

Export Citation Format

Share Document