scholarly journals Optimization of the key geological target parameters of shale-gas horizontal wells in the Changning Block, Sichuan Basin

2016 ◽  
Vol 3 (6) ◽  
pp. 571-576 ◽  
Author(s):  
Hongzhi Yang ◽  
Xiaotao Zhang ◽  
Man Chen ◽  
Jianfa Wu ◽  
Jian Zhang ◽  
...  
2021 ◽  
Author(s):  
Guodong Ji ◽  
Haige Wang ◽  
Hongchun Huang ◽  
Meng Cui ◽  
Feixue Yulong ◽  
...  

Abstract The horizontal section length of shale gas horizontal wells in Sichuan Basin in the south-west of China generally exceeds 2000m. Cuttings are apt to accumulate and form cuttings beds along such long and curve horizontal sections due to low cuttings carrying capacity, which often results in excessive torque and drag or even stuck pipes during drilling process. According to the statistics dada inthe period of Jan. - Oct. 2019, more than 25 stuck pipe incidents and 15 rotary steering tools loss in borehole were reported due to inefficient cuttings transportation in the long horizontal wells in Sichuan Basin. This paper studies the cuttings transportation and cuttings bed formation in horizontal wells. A prediction model for the distribution of cuttings bed was established. A monitoring and analysis software for the cuttings bed and cuttings cleaner with V-shaped spiral blades that is used to agitate the cuttings bed wasdeveloped. The software calculates the distribution and thickness of the cuttings bed according to the well trajectory, wellbore structure, drilling fluid characteristics, etc., and provides the optimal operating parameters for the removal of the cuttings bed by the rotating and reciprocating drill string. Then, the drill cuttings remover in the drill string moves to the predicted position of the drill cuttings, scrapes the drill cuttings and creates a swirling flow during the pipe rotation. The combined application of software and makeup remover can effectively solve the issue of borehole cleaning in long horizontal wells. One of the field applications was carried out in the well Ning 209H12, a shale gas horizontal well in Sichuan Basin. The well experienced excessive torque and drag issue during the tripping of drill string of long horizontal section. Thesoftware ran based on oil well data, and it determines the placement and thickness of cuttings beds in the well and calculates the optimal operating parameters for a flow rate of about 32L/s and a speed of 100rpm to remove them. By rotatingand reciprocating the drill string with recommended operating parameters along the cuttings bed interval, the removers helped cleaning the cuttings bed efficiently and significant amount of cuttings was observed at vibration screen. After cleaning the cuttings bed interval, the trip smoothly ran to the bottom without any excessive torque and drag, and then continues to drill in cooperation with the removers to the total depth. During the well completion, there was no problem with the operation of electrical logging and production casing. This cuttings removal technology has been used in other shale gas formations and tight gas formations where horizontal wells are widely used.


2020 ◽  
Vol 7 (1) ◽  
pp. 64-70
Author(s):  
Xuejun Cao ◽  
Minggui Wang ◽  
Jie Kang ◽  
Shaohong Wang ◽  
Ying Liang

2021 ◽  
Author(s):  
Juntao Yan ◽  
Yongqiang Fu ◽  
Chengfeng Guo ◽  
Jeremy A Greenwood ◽  
Lingjun Wang ◽  
...  

Abstract Sichuan shale gas development will move to reservoirs deeper than 3,500m TVD in the future after a production milestone breakthrough of 10 billion m3 per year from Southern Sichuan basin was achieved. 80% of Sichuan shale gas total resources will come from deep reserves compared to reservoirs at a shallower depth. Improvements in drilling efficiency are the key success factor of deep shale gas development to enhance production and cost control with the increasing activity. Due to complex engineering and geological conditions, drilling deep shale gas horizontal wells in the Southern Sichuan basin is more challenging than traditional shallower wells. The High Pressure and High Temperature (HPHT) harsh drilling environment has caused the frequent failure of the standard Rotary Steerable System (RSS), Measurement While Drilling (MWD), and Logging While Drilling (LWD) tools during recent drilling operations. The surface cooling system, combined with thermal mitigation practices, positively impacted the increasing trend of bottom hole circulating temperature (BHCT) and extended equipment life in short horizontal sections. However, thermal mitigation reduced in effectiveness with the increase in the length of the horizontal section as frictional heating increased. BHCT reached above 150degC while drilling and exceeded the operating limits of standard tools. The challenge of managing the circulating temperatures resulted in approximately 50% of the total runs in 2020 being tripped before the run objectives were met, creating non-production time (NPT) and significantly decreasing drilling efficiency. To overcome this challenge and reduce NPT, two options were evaluated. A high-temperature Motor bottom hole assembly (BHA) brought risks of poor well trajectory control, resulting in well placement issues during geosteering, and lower potential reservoir exposure. For the first time in China Shale gas, an HPHT RSS with near-bit gamma-ray imaging was selected to maximize drilling efficiency and reservoir exposure. In addition to the tool selection, an HT optimization process was created that included horizontal well BHCT modeling and prediction and deep shale gas RSS drilling best practices. The near-bit gamma imaging quality was enhanced to improve steering. These changes delivered record runs in deep shale gas long horizontal wells and significantly decreased NPT. Reducing the reliance on surface cooling systems also increased overall operating efficiency. This paper reviews the choice of equipment, implementation of HPHT RSS, and development of HT optimization process that improved the drilling efficiency, reduced well time and enhanced long horizontal well placement in this complex drilling environment.


Author(s):  
Roger Yuan ◽  
Fa Dwan ◽  
Navpreet Singh ◽  
Liang Jin ◽  
Danny Soo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document