scholarly journals Damage evaluation on oil-based drill-in fluids for ultra-deep fractured tight sandstone gas reservoirs

2017 ◽  
Vol 4 (4) ◽  
pp. 249-255 ◽  
Author(s):  
Jinzhi Zhu ◽  
Lijun You ◽  
Jiaxue Li ◽  
Yili Kang ◽  
Junjie Zhang ◽  
...  
2021 ◽  
Vol 196 ◽  
pp. 107705
Author(s):  
Qi Li ◽  
Yaxiong Li ◽  
Shusheng Gao ◽  
Huaxun Liu ◽  
Liyou Ye ◽  
...  

2020 ◽  
Vol 17 (3) ◽  
pp. 463-474
Author(s):  
Shengjie Li ◽  
Ying Rao

Abstract Seismic low-frequency amplitude shadows have been widely used as a hydrocarbon indicator. This study investigates the effect of reservoir properties and seismic wave mode conversion on the characteristics of the low-frequency amplitude shadows in gas-bearing reservoirs. The target gas reservoirs are typically related to the lithology of tight sandstone with strong heterogeneity. Pore-fluid distribution within the reservoirs presents patchy saturation in the vertical and horizontal directions, and this patchy saturation easily induces low-frequency shadows beneath gas-bearing reservoirs. These low-frequency shadows are validated by using a poroelastic simulation method. The results of our field case-based study indicate that pore-fluid property, plus the thickness and heterogeneity of reservoirs are the key elements in the generation of low-frequency shadows. The results also indicate that the poroelastic simulation method can be used to effectively predict the spatial distribution of gas-bearing reservoirs, by directly verifying the low-frequency shadow phenomenon existing in the seismic data.


2019 ◽  
Vol 178 ◽  
pp. 311-323 ◽  
Author(s):  
Dujie Zhang ◽  
Yili Kang ◽  
A.P.S. Selvadurai ◽  
Lijun You ◽  
Jian Tian

2011 ◽  
Vol 51 (1) ◽  
pp. 499 ◽  
Author(s):  
Vamegh Rasouli ◽  
Mohammad Sarmadivaleh ◽  
Amin Nabipour

Hydraulic fracturing is a technique used to enhance production from low quality oil and gas reservoirs. This approach is the key technique specifically in developing unconventional reservoirs, such as tight formations and shale gas. During its propagation, the hydraulic fracture may arrive at different interfaces. The mechanical properties and bounding quality of the interface as well as insitu stresses are among the most significant parameters that determine the interaction mechanism, i.e. whether the hydraulic fracture stops, crosses or experiences an offset upon its arrival at the interface. The interface could be a natural fracture, an interbed, layering or any other weakness feature. In addition to the interface parameters, the rock types of the two sides of the interface may affect the interaction mechanism. To study the interaction mechanism, hydraulic fracturing experiments were conducted using a true triaxial stress cell on two cube samples of 15 cm. Sample I had a sandstone block in the middle surrounded by mortar, whereas in sample II the location of mortar and tight sandstone blocks were changed. The results indicated that besides the effect of the far field stress magnitudes, the heterogeneity of the formation texture and interface properties can have a dominant effect in propagation characteristics of an induced fracture.


2018 ◽  
Vol 5 (6) ◽  
pp. 589-597
Author(s):  
Hongyu Ma ◽  
Shusheng Gao ◽  
Liyou Ye ◽  
Huaxun Liu ◽  
Wei Xiong ◽  
...  

Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Peng Xu ◽  
Mingbiao Xu

Oil-based drilling fluids (OBDFs) have a strong wellbore stabilization effect, but little attention has been paid to the formation damage caused by oil-based drilling fluids based on traditional knowledge, which is a problem that must be solved prior to the application of oil-based drilling fluid. For ultradeep fractured tight sandstone gas reservoirs, the reservoir damage caused by oil-based drilling fluids is worthy of additional research. In this paper, the potential damage factors of oil-based drilling fluids and fractured tight sandstone formations are analyzed theoretically and experimentally. The damage mechanism of oil-based drilling fluids for fractured tight sandstone gas reservoirs is analyzed based on the characteristics of multiphase fluids in seepage channels, the physical and chemical changes of rocks, and the rheological stability of oil-based drilling fluids. Based on the damage mechanism of oil-based drilling fluids, the key problems that must be solved during the damage control of oil-based drilling fluids are analyzed, a detailed description of formation damage characteristics is made, and how to accurately and rapidly form plugging zones is addressed. This research on damage control can provide a reference for solving the damage problems caused by oil-based drilling fluids in fractured tight sandstone gas reservoirs.


Sign in / Sign up

Export Citation Format

Share Document