scholarly journals Volume fracturing and drainage technologies for low-pressure marine shale gas reservoirs in the Ordos Basin

Author(s):  
Suotang Fu ◽  
Wenxiong Wang ◽  
Xianwen Li ◽  
Shengli Xi ◽  
Xifeng Hu ◽  
...  
2012 ◽  
Vol 616-618 ◽  
pp. 96-99
Author(s):  
Fang Lu ◽  
Xin Jiang Du ◽  
Zhi Jun Mao ◽  
Yan Zhou ◽  
Yue Bin Cui ◽  
...  

Sulige Gas Field is located in the Suligemiao area, northwest of the Ordos Basin, with a prospecting area of about 4×104km2. Owing to the strong heterogeneity in the SQW Block, one of exploration blocks in the Sulige Gas Field, remains reservoir characteristics of the gas field: lithologic gas reservoirs with characteristics of “three low” (low pressure, low permeability and low abundance). The He8 member of the Shihezi formation, the major exploration target, is deposited in braided river environment. The conventional logging data is very useful to indentify different facies and to estimate gas potential. The technology of discrimination with sedimentary facies and gas layers using logging data is established in this paper. We use the technology combining with AVO and other exploration methods to pick out 4 favorable exploration target areas with the success rate of more than 80%.


2015 ◽  
Vol 61 (1) ◽  
pp. 36-46 ◽  
Author(s):  
Feng GAO ◽  
HePing XIE ◽  
LingZhi XIE ◽  
YongMing YANG ◽  
Yang JU ◽  
...  

2015 ◽  
Vol 8 (1) ◽  
pp. 297-307
Author(s):  
Hongyan Yu ◽  
Zhenliang Wang ◽  
Hao Cheng ◽  
Qianqian Yin ◽  
Bojiang Fan ◽  
...  

Unconventional reservoirs are keys to oil and gas exploration and development, especially shale gas reservoirs. Discriminated shale gas reservoir lithofacies are, in particular, a primary problem in shale gas reservoir engineering. The mineral composition will affect both absorbed and free gas contents, therefore their identification is important. The mineral composition is one part of lithofacies. The shale content has always been used in previous lithological identifications: this method is effective in sand reservoirs; however, it is not suitable for use in shale gas reservoirs. This paper takes No.7 section in Yanchang formation in Ordos basin as an example. Through a lithological analysis, it was concluded that overlap method and cross-plot method are not also inappropriate for shale gas reservoirs. The Ordos basin shale gas reservoir is divided into seven lithofacies. We form a mathematical method and apply it to shale gas reservoirs using the shale volume and ΔlgR which are available from conventional well logging and reflect organic matter in the processed dataset. Decision tree is used here. However, there were too many parameters to discriminate all lithofacies precisely. Principal component analysis (PCA) is a technique used to reduce multidimensional data sets to lower dimensions for analysis. This technique can be useful in petro-physics and geology as a preliminary method of combining multiple logs into a single entity or two logs without losing information. Combining PCA and a decision tree algorithm, the lithofacies of a shale gas reservoir were accurately discriminated.


2021 ◽  
Author(s):  
Suotang Fu ◽  
Shengli Xi ◽  
Jian Yu ◽  
Xifeng Hu ◽  
Yuan Liu ◽  
...  

Abstract Ordos basin in central China is well known for its rich accumulation of natural resources, including Triassic tight oil and Permian tight gas. A recent exploration breakthrough shows that Ordovician shale in the same basin is also promising. The purpose of this study is to capture the engineering details of two horizontal exploration wells exploration in Wulalike formation, which mark the first production of marine shale gas in Ordos basin. The Ordovician Wulalike formation in the Ordos basin was previously seen as source rock. During early exploration in the 2010s, the formation was found to be gas bearing. However, the Wulalike shale formation shows very different features compared to the Triassic lacustrine shale in the same basin and the Silurian marine shale from Sichuan. The abundance of natural fissures, the low reservoir pressure, and the tendency to produce water are unique challenges and concerns for the Wulalike shale formation. Based on the pilot well evaluations, two horizontal wells were drilled and completed in the Wulalike formation in different locations in the western Ordos basin in 2019–2020. Both wells were well-landed in the target zone and were completed with multistage large-scale fracturing treatments. Following the well completions, flowback and production tests lasted for 3 to 5 months. Production tests showed that well 1 reached an economically acceptable gas rate in natural flow for a long-term period, producing 20,000 to 60,000 std m3/d, and well 2 produced good gas in the early period but was soon overwhelmed by massive water production. Both wells were evaluated with production logging tools. In well 1, fiber-optic distributed acoustic sensing (DAS) and distributed temperature sensing (DTS) were used, and in well 2, a production logging tool (PLT) was used. The positive gas production from both wells marks the first production of marine shale gas in the Ordos basin. The understanding of the geology and reservoir, the use of unconventional fracturing and completion practices, the assistance of energized fluid, and post-treatment artificial lift are the technologies that helped achieve this success. Further study is needed on the complexity of the natural fissures to lower the risk of unwanted water production from the Wulalike rocks. The first successful production from the Wulalike is very critical for the exploration of the Ordovician section in the Ordos basin because it helps to confirm a favorable exploration and appraisal area of 2000 to 3000 km2, which has the potential to turn into a huge reserve. This case study provides value from a technical standpoint, as very few success stories have been reported from low-pressure shale gas previously in China or worldwide.


Author(s):  
Roger Yuan ◽  
Fa Dwan ◽  
Navpreet Singh ◽  
Liang Jin ◽  
Danny Soo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document