Non-destructive analysis of micro texture and grain boundary character from X-ray diffraction contrast tomography

Author(s):  
A. King ◽  
M. Herbig ◽  
W. Ludwig ◽  
P. Reischig ◽  
E.M. Lauridsen ◽  
...  
2020 ◽  
Vol 76 (6) ◽  
pp. 652-663 ◽  
Author(s):  
H. Fang ◽  
D. Juul Jensen ◽  
Y. Zhang

Laboratory X-ray diffraction contrast tomography (LabDCT) has recently been developed as a powerful technique for non-destructive mapping of grain microstructures in bulk materials. As the grain reconstruction relies on segmentation of diffraction spots, it is essential to understand the physics of the diffraction process and resolve all the spot features in detail. To this aim, a flexible and standalone forward simulation model has been developed to compute the diffraction projections from polycrystalline samples with any crystal structure. The accuracy of the forward simulation model is demonstrated by good agreements in grain orientations, boundary positions and shapes between a virtual input structure and that reconstructed based on the forward simulated diffraction projections of the input structure. Further experimental verification is made by comparisons of diffraction spots between simulations and experiments for a partially recrystallized Al sample, where a satisfactory agreement is found for the spot positions, sizes and intensities. Finally, applications of this model to analyze specific spot features are presented.


2018 ◽  
Vol 24 (S2) ◽  
pp. 554-555
Author(s):  
Hrishikesh Bale ◽  
Ron Kienan ◽  
Stephen T Kelly ◽  
Nicolas Gueninchault ◽  
Erik Lauridsen ◽  
...  

2013 ◽  
Vol 772 ◽  
pp. 143-147
Author(s):  
Marianna Marciszko ◽  
Andrzej Stanisławczyk ◽  
Andrzej Baczmanski ◽  
Krzysztof Wierzbanowski ◽  
Wilfrid Seiler ◽  
...  

The geometry based on the multireflection grazing incidence X-ray diffraction (called the MGIXD method) can be applied to measure residual stresses. Using this method, it is possible to perform a non-destructive analysis of the heterogeneous stresses for different and well defined volumes below the surface of the sample (range of several mm). As the result the average values of stresses weighted by absorption of X-ray radiation are measured. In this work the stress profile as a function of depth for mechanically polished Ti and Al samples were calculated from MGIXD data using inverse Laplace transform.


2006 ◽  
Vol 39 (5) ◽  
pp. 633-646 ◽  
Author(s):  
A. Kumar ◽  
U. Welzel ◽  
E. J. Mittemeijer

A rigorous measurement strategy for (X-ray) diffraction stress measurements at fixed penetration/information depths has been developed. Thereby errors caused by lack of penetration-depth control in traditional (X-ray) diffraction (sin2ψ) measurements have been annulled. The range of accessible penetration/information depths and experimental aspects have been discussed. As a practical example, the depth gradient of the state of residual stress in a sputter-deposited nickel layer of 2 µm thickness has been investigated by diffraction stress measurements with uncontrolled penetration/information depth and two controlled penetration/information depths corresponding to about one quarter and one tenth of the layer thickness, respectively. The decrease of the planar tensile stress in the direction towards the surface could be well established quantitatively.


IUCrJ ◽  
2021 ◽  
Vol 8 (4) ◽  
Author(s):  
H. Fang ◽  
D. Juul Jensen ◽  
Y. Zhang

Laboratory diffraction contrast tomography (LabDCT) is a novel technique for non-destructive imaging of the grain structure within polycrystalline samples. To further broaden the use of this technique to a wider range of materials, both the spatial resolution and detection limit achieved in the commonly used Laue focusing geometry have to be improved. In this work, the possibility of improving both grain indexing and shape reconstruction was investigated by increasing the sample-to-detector distance to facilitate geometrical magnification of diffraction spots in the LabDCT projections. LabDCT grain reconstructions of a fully recrystallized iron sample, obtained in the conventional Laue focusing geometry and in a magnified geometry, are compared to one characterized by synchrotron X-ray diffraction contrast tomography, with the latter serving as the ground truth. It is shown that grain indexing can be significantly improved in the magnified geometry. It is also found that the magnified geometry improves the spatial resolution and the accuracy of the reconstructed grain shapes. The improvement is shown to be more evident for grains smaller than 40 µm than for larger grains. The underlying reasons are clarified by comparing spot features for different LabDCT datasets using a forward simulation tool.


Talanta ◽  
2008 ◽  
Vol 76 (1) ◽  
pp. 183-188 ◽  
Author(s):  
A. Duran ◽  
L.K. Herrera ◽  
M.C. Jimenez de Haro ◽  
A. Justo ◽  
J.L. Perez-Rodriguez

2008 ◽  
Vol 571-572 ◽  
pp. 207-212 ◽  
Author(s):  
Andrew King ◽  
Greg Johnson ◽  
Wolfgang Ludwig

In this paper the authors describe a technique based on synchrotron x-ray diffraction which has been used to produce full 3D grain maps (both grain shapes and orientations) in annealed aluminium alloy and stainless steel samples containing around 500 grains. The procedure is termed diffraction contrast tomography (DCT), reflecting its similarities with conventional absorption contrast tomography. It is an extension of the 3D X-ray diffraction microscopy (3DXRD) concept, and has been developed in collaboration with its inventors. The specimen is illuminated using a monochromatic synchrotron x-ray beam, and grains imaged using the extinction contrast that appears in the transmitted beam when grains are aligned in the diffraction condition during rotation of the sample. The beams of radiation diffracted by the grains are captured simultaneously on the same detector as the direct beam image. The combination of diffraction and extinction information aids the grain indexing operation, in which pairs of diffraction and extinction images are assigned to grain sets. 3D grain shapes are determined by algebraic reconstruction from the limited number of extinction projections, while crystallographic orientation is found from the diffraction geometry. The non-destructive nature of the technique allows for in-situ studies of mapped samples. Research is in progress to extend the technique to allow the determination of the elastic strain and stress tensors on a grain-by-grain basis.


1990 ◽  
Vol 208 ◽  
Author(s):  
R. N. Sacks

ABSTRACTSome of today's most promising and interesting semiconductor devices use only a few thin epitaxial layers of III-V materials, where each layer may be only 100 to 1,000A thick. There is a need for fast, accurate, non-destructive analysis techniques for these structures. Double-crystal x-ray diffraction has proven to be an excellent method for measuring composition, thickness, interface sharpness, and overall crystalline quality of III-V heterostructures. Data is presented on the use of a Bede QC1 automated table-top double-crystal diffractometer for the analysis of (AI,Ga)As, (ln,Ga)As, and GaAs epitaxial layers grown by Molecular Beam Epitaxy (MBE). It is shown that this technique can directly detect and analyze single layers of (In,Ga)As as thin as 200A, and in some cases, can indirectly detect layers of GaAs or (AI,Ga)As as thin as 100A without unusual measures such as glancing angle diffraction. The rocking curve results are compared with values predicted by RHEED intensity oscillation measurements, and with computer simulations using a commercial software package.


Sign in / Sign up

Export Citation Format

Share Document