diffraction measurement
Recently Published Documents


TOTAL DOCUMENTS

456
(FIVE YEARS 72)

H-INDEX

29
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Xiujuan Shi ◽  
Jun Zhang ◽  
Junkai Liu ◽  
Xueqian Zhao ◽  
Haoran Wang ◽  
...  

Nature possesses a powerful ability to assemble multiple complex structures to fabricate hierarchical biological structures in a living-assembled way. However, it is still a huge challenge for artificial systems to fabricate and characterize hierarchical living assemblies with well-defined and controllable but complex structures. In this work, we proposed a new concept for the fabrication of multiblock fluorescent microcolumns, which relies on the cooperation between the controllable host–guest complexation based on cucurbit[8]uril (CB[8]) and the living assembly of nanotubular supramolecular polymers composed of CB[8] and NaBr in aqueous solution. By using the complexation of CB[8] with different guest numbers of luminogens with aggregation-induced emission (AIEgens) characteristics, and the difference in affinity between CB[8] and different types of AIEgens, the concentration-controlled and self-sorting-controlled sequential living assembly are realized, respectively. Correspondingly, multiblock fluorescent microcolumns with different fluorescence emission are fabricated, and the molecular structure of each fluorescent block is analyzed by single crystal X-ray diffraction measurement. In addition, the living assembly of multiblock fluorescent microcolumns is visualized, understood, and regulated with the aid of AIEgens. The method developed here is expected to be extended to more guest molecules of CB[8] and also provides a referential crystallization method for CB[8]-based complexes.


Author(s):  
Nadia Mohammed Jassim ◽  
Alyaa Hussein Ali ◽  
Ammar Jassim Mohammed

The object of research is studying Raman scattering technique, photoluminescence and some optical properties of silver nanoparticles created by eco-friendly technique which independent on a long time, effort, energy and high temperatures, and with the highest adsorption capacity in order to achieve a high inhibition to paralyze the activity of the bacterial wall, by achieving the highest surface plasmon resonance (SRR). Silver nanoparticles were prepared using Matricaria Flower extract. Characterization of silver nanoparticles and detection of their effectiveness against microbial using two types of bacteria (Escherichia Coli and Staphylococcus aureus ), these nanoparticles were measured using a number of measurements, X-ray diffraction measurement, Energy Dispersion (EDX), (FESEM), U–V Spectroscopy, Fourier Transform Infrared (FTIR), Photoluminescence (PL) properties of silver nanoparticle at room temperature and Raman scattering spectroscopy were investigated. The Scherrer’s equation was used to calculate the crystallite size of Silver nanoparticles, the average crystallite size is 48.64 nm. The PL spectra of silver nanoparticles exhibit two emission bands: one is in the UV region 350 nm and the other is in the visible region 650 nm. This is roughly identical to the absorption spectrum results. The antimicrobial activity was tested against gram negative bacteria (Escherichia coli) and gram positive bacteria (Staphylococcus aureus). Prepared Ag NPs exhibited inhibitory activity in both types of bacteria strains at best selectivity against gram-negative bacteria. An eco-friendly technique is used for synthesizing technique to produce silver nanoparticles with the expected best application properties. These research results suitable to be use the Silver nanoparticles in sensors and many electronic, electrical, medical and biological applications


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3962
Author(s):  
Abdul Shakoor Shar ◽  
Caili Zhang ◽  
Xieqing Song ◽  
Yunxuan Weng ◽  
Qiuyue Du

Polymer/clay composites are an innovative class of materials. In this study, we present a facile method for the preparation of biodegradable and robust PLA/organomodified montmorillonite (OMMT) composite films with excellent gas barrier performance. When the design of PLA/OMMT composite films, in addition to making OMMT have good intercalation effect in the matrix, the compatibility of intercalating polymer and matrix should also be considered. In this work, two polymers with high gas barrier properties, namely poly(vinyl alcohol) (PVA) and ethylene vinyl alcohol copolymer (EVOH), were selected to intercalate OMMT. The morphology and microstructures of the prepared PLA/PVA/OMMT and PLA/EVOH/OMMT composites were characterized by the X-ray diffraction measurement, scanning electron microscopy, and differential scanning calorimetry. It was shown that the good dispersibility of PVA in the PLA matrix, rather than the intercalation effect, was responsible for the improved gas barrier and mechanical properties of PLA/PVA/OMMT composite. The elongation at break increases from 4.5% to 22.7% when 1 wt % PVA is added to PLA/OMMT. Moreover, gas barrier of PLA/PVA1/OMMT measured as O2 permeability is 52.8% higher than that of neat PLA. This work provides a route to intercalate OMMT interlayer with high gas barrier polymers and thus can be a useful reference to fabricate PLA/OMMT composites with improved gas barrier and mechanical properties. A comparison of oxygen permeabilities with existing commercial packaging films indicates that the biodegradable PLA/PVA/OMMT may serve as a viable substitute for packaging film applications.


Author(s):  
Chengwei Zhao ◽  
Xiaoping Li ◽  
Yanming Liu ◽  
Donglin Liu ◽  
Chao Sun ◽  
...  

Abstract In this paper, a non-contact plasma microwave diffraction measurement method is proposed, which can obtain the electron density at different diameters of the cylindrical plasma. There is a lot of diffraction when a non-focused antenna is used to transmit plasma. As we all know, when the frequency of the incident microwave is lower than the characteristic frequency of the plasma, the microwave cannot be transmitted through the plasma, so this interface can be regarded as a metal. According to the microwave diffraction of the plasma, the size of the plasma correspond-ing to the characteristic frequency can be obtained. Furthermore, by sweeping the incident elec-tromagnetic wave, the size of plasma with different characteristic frequencies can be obtained, and the distribution of electron density can be obtained. To verify the method, a cylindrical plasma was measured by microwave diffraction, in which the electron density of the plasma column gradually decreased along the increase in radius. According to the diffraction of the plasma column at different frequencies, the distribution of the electron density along the diame-ter is obtained. And compared with the transmission diagnosis method, the validity and accuracy of this method are verified. In non-uniform high-temperature plasma, the diffraction method greatly improves the accuracy of spatial diagnosis compared with traditional transmission diag-nosis.


2021 ◽  
Vol 21 (11) ◽  
pp. 5603-5610
Author(s):  
P. K. Kasana ◽  
Jyoti Shakya ◽  
Tanuja Mohanty

Here, we report the structural and electronic modification induced in chemical vapor deposited graphene by using swift heavy ions (70 MeV Ni6+).Raman spectroscopy was used to quantify the irradiation-induced modification in vibrational properties. The increase in defect density with fluence causes an increase in the intensity ratio of its characteristic Raman D and G band. The increase in defect density also results in a decrease in crystallite size. The changes in the crystal structure are observed from X-rays diffraction measurement. Swift heavy ion irradiation induced defect, modified the surface roughness and surface potential of graphene thin film as measured from atomic force microscopy and scanning Kelvin probe microscopy respectively. The increase in the work function, surface roughness as well as defect concentration with fluence, indicate the possibility of linear correlation between them. Presence of defects in graphene sheets strongly affects surface electronic and optical properties of the material that can be used to tailor the optoelectronics device performance.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2697
Author(s):  
Shih-Ju Liu ◽  
Shu-Chuan Liao

With the advancement of science and modern medical technology, more and more medical materials and implants are used in medical treatment and to improve human life. The safety of invasive medical materials and the prevention of infection are gradually being valued. Therefore, avoiding operation failure or wound infection and inflammation caused by surgical infection is one of the most important topics in current medical technology. Silver nanoparticles (AgNPs) have minor irritation and toxicity to cells and have a broad-spectrum antibacterial effect without causing bacterial resistance and other problems. They are also less toxic to the human body. Bamboo charcoal (BC) is a bioinert material with a porous structure, light characteristics, and low density, like bone quality. It can be used as a lightweight bone filling material. However, it does not have any antibacterial function. This study synthesized AgNPs under the ultraviolet (UV) photochemical method by reducing silver nitrate with sodium citrate. The formation and distribution of AgNPs were confirmed by UV-visible spectroscopy and X-ray diffraction measurement (XRD). The BC was treated by O2 plasma to increase the number of polar functional groups on the surface. Then, UV light-induced graft polymerization of N-isopropyl acrylamide (NIPAAm) and AgNPs were applied onto the BC to immobilize thermos-/antibacterial composite hydrogels on the BC surface. The structures and properties of thermos-/antibacterial composite hydrogel-modified BC surface were characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared spectrum (FT-IR), and X-ray photoelectron spectroscopy (XPS). The results show that thermos-/antibacterial composite hydrogels were then successfully grafted onto BC. SEM observations showed that the thermos-/antibacterial composite hydrogels formed a membrane structure between the BC. The biocompatibility of the substrate was evaluated by Alamar Blue cell viability assay and antibacterial test in vitro.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5296
Author(s):  
Kaushik Naskar ◽  
Suvendu Maity ◽  
Himadri Sekhar Maity ◽  
Chittaranjan Sinha

[Cu(CPA)(BDC)]n (CPA = 4-(Chloro-phenyl)-pyridin-4-ylmethylene-amine; BDC = 1,4-benzenedicarboxylate) has been synthesized and structurally characterized by single crystal X-Ray diffraction measurement. The structural studies establish the copper (II) containing 2D sheet with (4,4) square grid structure. The square grid lengths are 10.775 and 10.769 Å. Thermal stability is assessed by TGA, and subsequent PXRD data establish the crystallinity. The surface morphology is evaluated by FE-SEM. The N2 adsorption−desorption analysis demonstrates the mesoporous feature (∼6.95 nm) of the Cu-MOF. This porous grid serves as heterogeneous green catalyst with superficial recyclability and thermal stability and facilitates organic transformations efficiently such as, Click and Knoevenagel reactions in the aqueous methanolic medium.


Sign in / Sign up

Export Citation Format

Share Document