scholarly journals Preferential stabilization of newly formed dendritic spines in motor cortex during manual skill learning predicts performance gains, but not memory endurance

2018 ◽  
Vol 152 ◽  
pp. 50-60 ◽  
Author(s):  
Taylor A. Clark ◽  
Min Fu ◽  
Andrew K. Dunn ◽  
Yi Zuo ◽  
Theresa A. Jones
2016 ◽  
Author(s):  
Sheena Waters ◽  
Tobias Wiestler ◽  
Jörn Diedrichsen

AbstractWhat is the role of ipsilateral motor and pre-motor areas in motor learning? One view supposes that ipsilateral activity suppresses contralateral motor cortex, and thus needs to be inhibited to improve motor learning. Alternatively, the ipsilateral motor cortex may play an active role in the control and learning of unilateral hand movements. We approached this question by applying double-blind bihemispheric transcranial direct current stimulation (tDCS) over both contralateral and ipsilateral motor cortex in a between-group design during four days of unimanual explicit sequence training. Independently of whether the anode was placed over contralateral or ipsilateral motor cortex, bihemispheric stimulation yielded substantial performance gains relative to unihemispheric or sham stimulation. This performance advantage appeared to be supported by plastic changes in both hemispheres: First, we found that behavioral advantages generalized strongly to the untrained hand, suggesting that tDCS strengthened effector-independent representations. Secondly, functional imaging during speed-matched execution of trained sequences conducted 48 h after training revealed sustained, polarity-independent increases in activity in both motor cortices relative to the sham group. These results suggest a cooperative rather than competitive interaction of the two motor cortices during skill learning and suggest that bihemispheric brain stimulation during unimanual skill learning may be beneficial, because it harnesses plasticity in the ipsilateral hemisphere.Significance statementMany neurorehabilitation approaches are based on the idea that is beneficial to boost excitability in the contralateral hemisphere while attenuating that of the ipsilateral cortex to reduce interhemispheric inhibition. We observed that bihemispheric tDCS with the excitatory anode either over contralateral or ipsilateral motor cortex facilitated motor learning nearly twice as strongly as unihemispheric tDCS. These increases in motor learning were accompanied by increases in fMRI activation in both motor cortices that outlasted the stimulation period, as well as increased generalization to the untrained hand. Collectively, our findings suggest a cooperative—rather than competitive—role of the hemispheres and imply that it is most beneficial to harness plasticity in both hemispheres in neurorehabilitation of motor deficits.


2011 ◽  
Vol 29 (2) ◽  
pp. 105-113
Author(s):  
Michael Borich ◽  
Mary Furlong ◽  
Dennis Holsman ◽  
Teresa Jacobson Kimberley

2020 ◽  
Vol 123 (3) ◽  
pp. 1052-1062 ◽  
Author(s):  
Jasmine L. Mirdamadi ◽  
Hannah J. Block

Trial-and-error motor adaptation has been linked to somatosensory plasticity and shifts in proprioception (limb position sense). The role of sensory processing in motor skill learning is less understood. Unlike adaptation, skill learning involves the acquisition of new movement patterns in the absence of perturbation, with performance limited by the speed-accuracy trade-off. We investigated somatosensory changes during motor skill learning at the behavioral and neurophysiological levels. Twenty-eight healthy young adults practiced a maze-tracing task, guiding a robotic manipulandum through an irregular two-dimensional track featuring several abrupt turns. Practice occurred on days 1 and 2. Skill was assessed before practice on day 1 and again on day 3, with learning indicated by a shift in the speed-accuracy function between these assessments. Proprioceptive function was quantified with a passive two-alternative forced-choice task. In a subset of 15 participants, we measured short-latency afferent inhibition (SAI) to index somatosensory projections to motor cortex. We found that motor practice enhanced the speed-accuracy skill function ( F4,108 = 32.15, P < 0.001) and was associated with improved proprioceptive sensitivity at retention ( t22 = 24.75, P = 0.0031). Furthermore, SAI increased after training ( F1,14 = 5.41, P = 0.036). Interestingly, individuals with larger increases in SAI, reflecting enhanced somatosensory afference to motor cortex, demonstrated larger improvements in motor skill learning. These findings suggest that SAI may be an important functional mechanism for some aspect of motor skill learning. Further research is needed to test what parameters (task complexity, practice time, etc.) are specifically linked to somatosensory function. NEW & NOTEWORTHY Somatosensory processing has been implicated in motor adaptation, where performance recovers from a perturbation such as a force field. We investigated somatosensory function during motor skill learning, where a new motor pattern is acquired in the absence of perturbation. After skill practice, we found changes in proprioception and short-latency afferent inhibition (SAI), signifying somatosensory change at both the behavioral and neurophysiological levels. SAI may be an important functional mechanism by which individuals learn motor skills.


2008 ◽  
Vol 20 (1) ◽  
pp. 5-22 ◽  
Author(s):  
Bogdan Sadowski

Plasticity of the Cortical Motor SystemThe involvement of brain plastic mechanisms in the control of motor functions under normal and pathological conditions is described. These mechanisms are based on a similar principle as the neuronal models of neuronal plasticity - long-term potentiation (LTP), and long-term depression (LTD). In the motor cortex, LTP-like phenomena play a role in strengthening synaptic connections between pyramidal neurons. LTD is important for the elimination of unnecessary inputs to the cortex. The dynamic features of the primary motor cortex activity depend on particular neuronal interconnectivity within this area. The pyramidal cells send horizontal collaterals to adjacent subregions of the primary motor cortex, and so can either excite or inhibit remote pyramidal cells. These connections can expand or shrink depending on actual physiological demands, and play a role in skill learning.


Sign in / Sign up

Export Citation Format

Share Document