motor adaptation
Recently Published Documents


TOTAL DOCUMENTS

378
(FIVE YEARS 112)

H-INDEX

41
(FIVE YEARS 6)

2022 ◽  
Vol 12 ◽  
Author(s):  
Carsten M. Klingner ◽  
Fabian Kattlun ◽  
Lena Krolopp ◽  
Elisabeth Jochmann ◽  
Gerd F. Volk ◽  
...  

Learning from errors as the main mechanism for motor adaptation has two fundamental prerequisites: a mismatch between the intended and performed movement and the ability to adapt motor actions. Many neurological patients are limited in their ability to transfer an altered motor representation into motor action due to a compromised motor pathway. Studies that have investigated the effects of a sustained and unresolvable mismatch over multiple days found changes in brain processing that seem to optimize the potential for motor learning (increased drive for motor adaptation and a weakening of the current implementation of motor programs). However, it remains unclear whether the observed effects can be induced experimentally and more important after shorter periods. Here, we used task-based and resting-state fMRI to investigate whether the known pattern of cortical adaptations due to a sustained mismatch can be induced experimentally by a short (20 min), but unresolvable, sensory–motor mismatch by impaired facial movements in healthy participants by transient facial tapping. Similar to long-term mismatch, we found plastic changes in a network that includes the striatal, cerebellar and somatosensory brain areas. However, in contrast to long-term mismatch, we did not find the involvement of the cerebral motor cortex. The lack of the involvement of the motor cortex can be interpreted both as an effect of time and also as an effect of the lack of a reduction in the motor error. The similar effects of long-term and short-term mismatch on other parts of the sensory–motor network suggest that the brain-state caused by long-term mismatch can be (at least partly) induced by short-term mismatch. Further studies should investigate whether short-term mismatch interventions can be used as therapeutic strategy to induce an altered brain-state that increase the potential for motor learning.


2021 ◽  
Author(s):  
Caroline R Nettekoven ◽  
Leah Mitchell ◽  
William T Clarke ◽  
Uzay Emir ◽  
Heidi Johansen-Berg ◽  
...  

Motor adaptation is crucial for performing accurate movements in a changing environment and relies on the cerebellum. Although cerebellar involvement has been well characterized, the neurochemical changes in the cerebellum that underpin human motor adaptation remain unknown. We used a novel Magnetic Resonance Spectroscopic Imaging (MRSI) technique to measure changes in the major inhibitory neurotransmitter γ-aminobutyric acid (GABA) in the human cerebellum during visuomotor adaptation. Participants used their right hand to adapt to a rotated cursor in the scanner, compared with a control task requiring no adaptation. We were able to spatially resolve adaptation-driven GABA changes at the cerebellar nuclei and in the cerebellar cortex in the left and the right cerebellar hemisphere independently and found that simple movement of the right hand increases GABA in the right cerebellar nuclei and decreases GABA in the left. When isolating adaptation-driven GABA changes, we found an increase in GABA in the left cerebellar nuclei and a decrease in GABA in the right cerebellar nuclei during adaptation. Early adaptation-driven GABA change in the right cerebellar nuclei correlated with adaptation performance: Participants showing greater GABA decrease adapted better, suggesting that this early GABA change is behaviourally relevant. Early GABA change also correlated with functional connectivity change in a cerebellar network: Participants showing a greater decrease in GABA also showed greater strength increase in cerebellar network connectivity. These results were specific to GABA, specific to adaptation and specific to the cerebellar network. This study provides the first evidence for plastic changes in cerebellar neurochemistry during a motor adaptation task. Characterising these naturally occurring neurochemical changes may provide a basis for developing therapeutic interventions to facilitate neurochemical changes in the cerebellum that can improve human motor adaptation.


2021 ◽  
Author(s):  
Ignasi Cos ◽  
Gustavo Deco ◽  
Matthieu Gilson

Abstract Extensive research explains how pre-frontal cortical areas process explicit rewards, and how pre-motor and motor cortices are recipients of that processing to energize motor behaviour. However, the specifics of motor behaviour, decisions between actions and brain dynamics when driven by no explicit reward, remain poorly understood. Are patterns of decision and motor control altered wen performing under social pressure? Are the same brain regions that typically process explicit rewards also involved in this expression of motivation? To answer these questions, we designed a novel task of decision-making between precision reaches and manipulated motivation by means of social pressure, defined by the presence or absence of virtual partner of a higher/lower aiming skill than our participants. We assessed the overall influence of this manipulation by analysing movements, decisions, pupil dilation and electro-encephalography. We show that the presence of a partner consistently increased aiming accuracy along with pupil diameter, furthermore the more skilled the partner. Remarkably, increased accuracy is attained by faster movements, consistently with a vigour effect that breaches speed-accuracy trade-offs typical of motor adaptation. This implicated an ensemble of cortical sources including pre-frontal areas, concerned with the processing of reward, but also pre-motor and occipital sources, consistent with the nature of the task. Overall, these results strongly suggest the role of social pressure as a motivational drive, enabling an increase of both vigour and accuracy in a non-trivial fashion.


2021 ◽  
Author(s):  
Darío Cuevas Rivera ◽  
Stefan J. Kiebel

Humans have been shown to adapt their movements when a sudden change to the dynamics of the environment is introduced, a phenomenon called motor adaptation. If the change is reverted, the adaptation is also quickly reverted. Human are also able to adapt to multiple changes in dynamics presented separately, and to be able to switch between adapted movements on the fly. Such switching relies on contextual information which is often noisy or misleading, which affects the switch between adaptations. In this work, we introduce a computational model to explain the behavioral phenomena effected by uncertain contextual information. Specifically, we present a hierarchical model for motor adaptation based on exact Bayesian inference. This model explicitly takes into account contextual information and how the dynamics of context inference affect adaptation and action selection. We show how the proposed model provides a unifying explanation for four different experimentally-established phenomena: (i) effects of sensory cues and proprioceptive information on switching between tasks, (ii) the effects of previously-learned adaptations on switching between tasks, (iii) the effects of training history on behavior in new contexts, in addition to (iv) the well-studied savings, de-adaptation and spontaneous recovery.


2021 ◽  
Author(s):  
Matthew Weightman ◽  
John Stuart-Brittain ◽  
Alison Hall ◽  
Chris Miall ◽  
Ned Jenkinson

There is a fundamental discord between the foundational theories underpinning motor learning and how we currently apply transcranial direct current stimulation (TDCS). The former is dependent on tight coupling of events; the latter is conducted with very low temporal resolution, typically being applied for 10-20 minutes, prior to or during performance of a particular motor or cognitive task. Here we show that when short duration stimulation epochs (< 3 seconds) are yoked to movement, only the reaching movements repeatedly performed simultaneously with stimulation are selectively enhanced. We propose that mechanisms of Hebbian-like learning are potentiated within neural circuits that are active during movement and concurrently stimulated, thus driving improved adaptation.


2021 ◽  
Vol 13 ◽  
Author(s):  
Cristina Rossi ◽  
Ryan T. Roemmich ◽  
Nicolas Schweighofer ◽  
Amy J. Bastian ◽  
Kristan A. Leech

It has been proposed that motor adaptation and subsequent savings (or faster relearning) of an adapted movement pattern are mediated by cognitive processes. Here, we evaluated the pattern of cognitive-motor interference that emerges when young and late middle-aged adults perform an executive working memory task during locomotor adaptation. We also asked if this interferes with savings of a newly learned walking pattern, as has been suggested by a study of reaching adaptation. We studied split-belt treadmill adaptation and savings in young (21 ± 2 y/o) and late middle-aged (56 ± 6 y/o) adults with or without a secondary 2-back task during adaptation. We found that young adults showed similar performance on the 2-back task during baseline and adaptation, suggesting no effect of the dual-task on cognitive performance; however, dual-tasking interfered with adaptation over the first few steps. Conversely, dual-tasking caused a decrement in cognitive performance in late middle-aged adults with no effect on adaptation. To determine if this effect was specific to adaptation, we also evaluated dual-task interference in late middle-aged adults that dual-tasked while walking in a complex environment that did not induce motor adaptation. This group exhibited less cognitive-motor interference than late middle-aged adults who dual-tasked during adaptation. Savings was unaffected by dual-tasking in both young and late middle-aged adults, which may indicate different underlying mechanisms for savings of reaching and walking. Collectively, our findings reveal an age-dependent effect of cognitive-motor interference during dual-task locomotor adaptation and no effect of dual-tasking on savings, regardless of age. Young adults maintain cognitive performance and show a mild decrement in locomotor adaptation, while late middle-aged adults adapt locomotion at the expense of cognitive performance.


2021 ◽  
Vol 11 (11) ◽  
pp. 1537
Author(s):  
Álvaro Costa-García ◽  
Andrés Úbeda ◽  
Shingo Shimoda

Voluntary force modulation is defined as the ability to tune the application of force during motion. However, the mechanisms behind this modulation are not yet fully understood. In this study, we examine muscle activity under various resistance levels at a fixed cycling speed. The main goal of this research is to identify significant changes in muscle activation related to the real-time tuning of muscle force. This work revealed significant motor adaptations of the main muscles utilized in cycling as well as positive associations between the force level and the temporal and spatial inter-cycle stability in the distribution of sEMG activity. From these results, relevant biomarkers of motor adaptation could be extracted for application in clinical rehabilitation to increase the efficacy of physical therapy.


2021 ◽  
pp. 1-14
Author(s):  
Claudia Cornelis ◽  
Livia J. De Picker ◽  
Violette Coppens ◽  
Anne Morsel ◽  
Maarten Timmers ◽  
...  

<b><i>Background:</i></b> The “cognitive dysmetria hypothesis” of schizophrenia proposes a disrupted communication between the cerebellum and cerebral cortex, resulting in sensorimotor and cognitive symptoms. Sensorimotor adaptation relies strongly on the function of the cerebellum. <b><i>Objectives:</i></b> This study investigated whether sensorimotor adaptation is reduced in schizophrenia compared with age-matched and elderly healthy controls. <b><i>Methods:</i></b> Twenty-nine stably treated patients with schizophrenia, 30 age-matched, and 30 elderly controls were tested in three motor adaptation tasks in which visual movement feedback was unexpectedly altered. In the “rotation adaptation task” the perturbation consisted of a rotation (30° clockwise), in the “gain adaptation task” the extent of the movement feedback was reduced (by a factor of 0.7) and in the “vertical reversal task,” up- and downward pen movements were reversed by 180°. <b><i>Results:</i></b> Patients with schizophrenia adapted to the perturbations, but their movement times and errors were substantially larger than controls. Unexpectedly, the magnitude of adaptation was significantly smaller in schizophrenia than elderly participants. The impairment already occurred during the first adaptation trials, pointing to a decline in explicit strategy use. Additionally, post-adaptation aftereffects provided strong evidence for impaired implicit adaptation learning. Both negative and positive schizophrenia symptom severities were correlated with indices of the amount of adaptation and its aftereffects. <b><i>Conclusions:</i></b> Both explicit and implicit components of sensorimotor adaptation learning were reduced in patients with schizophrenia, adding to the evidence for a role of the cerebellum in the pathophysiology of schizophrenia. Elderly individuals outperformed schizophrenia patients in the adaptation learning tasks.


Sign in / Sign up

Export Citation Format

Share Document