The impact of Wolbachia on dengue transmission dynamics in an SEI–SIS model

2021 ◽  
Vol 62 ◽  
pp. 103363
Author(s):  
Yazhi Li ◽  
Lili Liu
2021 ◽  
Vol 8 (1) ◽  
pp. 1953722
Author(s):  
Josiah Mushanyu ◽  
Zviiteyi Chazuka ◽  
Frenick Mudzingwa ◽  
Chisara Ogbogbo

Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 691
Author(s):  
Dae-Sung Yoo ◽  
Byungchul Chun ◽  
Kyung-Duk Min ◽  
Jun-Sik Lim ◽  
Oun-Kyoung Moon ◽  
...  

Highly pathogenic avian influenza (HPAI) virus is one of the most virulent and infectious pathogens of poultry. As a response to HPAI epidemics, veterinary authorities implement preemptive depopulation as a controlling strategy. However, mass culling within a uniform radius of the infection site can result in unnecessary depopulation. Therefore, it is useful to quantify the transmission distance from infected premises (IPs) before determining the optimal area for preemptive depopulation. Accordingly, we analyzed the transmission risk within spatiotemporal clusters of IPs using transmission kernel estimates derived from phylogenetic clustering information on 311 HPAI H5N6 IPs identified during the 2016–2017 epidemic, Republic of Korea. Subsequently, we explored the impact of varying the culling radius on the local transmission of HPAI given the transmission risk estimates. The domestic duck farm density was positively associated with higher transmissibility. Ring culling over a radius of 3 km may be effective for areas with high dense duck holdings, but this approach does not appear to significantly reduce the risk for local transmission in areas with chicken farms. This study provides the first estimation of the local transmission dynamics of HPAI in the Republic of Korea as well as insight into determining an effective ring culling radius.


2012 ◽  
Vol 05 (04) ◽  
pp. 1250029 ◽  
Author(s):  
S. MUSHAYABASA ◽  
C. P. BHUNU

A deterministic model for evaluating the impact of voluntary testing and treatment on the transmission dynamics of tuberculosis is formulated and analyzed. The epidemiological threshold, known as the reproduction number is derived and qualitatively used to investigate the existence and stability of the associated equilibrium of the model system. The disease-free equilibrium is shown to be locally-asymptotically stable when the reproductive number is less than unity, and unstable if this threshold parameter exceeds unity. It is shown, using the Centre Manifold theory, that the model undergoes the phenomenon of backward bifurcation where the stable disease-free equilibrium co-exists with a stable endemic equilibrium when the associated reproduction number is less than unity. The analysis of the reproduction number suggests that voluntary tuberculosis testing and treatment may lead to effective control of tuberculosis. Furthermore, numerical simulations support the fact that an increase voluntary tuberculosis testing and treatment have a positive impact in controlling the spread of tuberculosis in the community.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Abadi Abay Gebremeskel

Mathematical models become an important and popular tools to understand the dynamics of the disease and give an insight to reduce the impact of malaria burden within the community. Thus, this paper aims to apply a mathematical model to study global stability of malaria transmission dynamics model with logistic growth. Analysis of the model applies scaling and sensitivity analysis and sensitivity analysis of the model applied to understand the important parameters in transmission and prevalence of malaria disease. We derive the equilibrium points of the model and investigated their stabilities. The results of our analysis have shown that if R0≤1, then the disease-free equilibrium is globally asymptotically stable, and the disease dies out; if R0>1, then the unique endemic equilibrium point is globally asymptotically stable and the disease persists within the population. Furthermore, numerical simulations in the application of the model showed the abrupt and periodic variations.


Vaccine ◽  
2019 ◽  
Vol 37 ◽  
pp. A154-A165 ◽  
Author(s):  
Waranya Rattanavipapong ◽  
Montarat Thavorncharoensap ◽  
Sitaporn Youngkong ◽  
Anne Julienne Genuino ◽  
Thunyarat Anothaisintawee ◽  
...  

2014 ◽  
Vol 07 (01) ◽  
pp. 1450006 ◽  
Author(s):  
STEADY MUSHAYABASA ◽  
CLAVER P. BHUNU

Hepatitis C virus (HCV) is a blood-borne infection that can lead to progressive liver failure, cirrhosis, hepatocellular carcinoma and death. A deterministic mathematical model for assessing the impact of daily intravenous drug misuse on the transmission dynamics of HCV is presented and analyzed. A threshold quantity known as the reproductive number has been computed. Stability of the steady states has been investigated. The dynamical analysis reveals that the model has globally asymptotically stable steady states. The impact of daily intravenous drug misuse on the transmission dynamics of HCV has been discussed through the basic reproductive number and numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document