Global existence and decay estimates for the classical solution of fractional attraction–repulsion chemotaxis system

2022 ◽  
Vol 65 ◽  
pp. 103485
Author(s):  
Kerui Jiang ◽  
Zhi Ling ◽  
Zuhan Liu
Author(s):  
Wenbin Lv ◽  
Qingyuan Wang

Abstract This paper deals with the global existence for a class of Keller–Segel model with signal-dependent motility and general logistic term under homogeneous Neumann boundary conditions in a higher-dimensional smoothly bounded domain, which can be written as $$\eqalign{& u_t = \Delta (\gamma (v)u) + \rho u-\mu u^l,\quad x\in \Omega ,\;t > 0, \cr & v_t = \Delta v-v + u,\quad x\in \Omega ,\;t > 0.} $$ It is shown that whenever ρ ∈ ℝ, μ > 0 and $$l > \max \left\{ {\displaystyle{{n + 2} \over 2},2} \right\},$$ then the considered system possesses a global classical solution for all sufficiently smooth initial data. Furthermore, the solution converges to the equilibrium $$\left( {{\left( {\displaystyle{{\rho _ + } \over \mu }} \right)}^{1/(l-1)},{\left( {\displaystyle{{\rho _ + } \over \mu }} \right)}^{1/(l-1)}} \right)$$ as t → ∞ under some extra hypotheses, where ρ+ = max{ρ, 0}.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Heping Ma

In this study, we deal with the chemotaxis system with singular sensitivity by two stimuli under homogeneous Neumann boundary conditions in a bounded domain with smooth boundary. Under appropriate regularity assumptions on the initial data, we show that the system possesses global classical solution. Our results generalize and improve previously known ones.


Author(s):  
Lijun Yan ◽  
Zuodong Yang

We consider the following quasilinear attraction-repulsion chemotaxis system of parabolic-elliptic-elliptic type with logistic source under homegeneous Neumann boundary conditions in a bounded domain `\Omega\subset R^{n}(n\geq2)` with smooth boundary, where`D(u)\geq c_{D}(u+1)^{m-1}` with `m\geq1`and `c_{D}>0`, `f(u)\leq a-bu^{\eta}` with `\eta>1`.{ We show two cases that the system admits a uniqueglobal bounded classical solution depending on `0\leq S(u)\leq C_{s}(u+1)^{q}, 0\leq F(u)\leq C_{F}(u+1)^{g}` by Gagliardo-Nirenberg inequality.For specific `D(u),S(u),F(u)` with logistic source for `\eta>1` and `n=2`, we establish the finite time blow-up conditions forsolutions that the finite time blow-up occurs at `x_{0}\in\Omega` whenever `\int_{\Omega}u_{0}(x)dx>\frac{8\pi}{\chi\alpha-\xi\gamma}`with `\chi\alpha-\xi\gamma>0`, under `\int_{\Omega}u_{0}(x)|x-x_{0}|^{2}dx` sufficiently small.


2015 ◽  
Vol 12 (02) ◽  
pp. 249-276
Author(s):  
Tomonari Watanabe

We study the global existence and the derivation of decay estimates for nonlinear wave equations with a space-time dependent dissipative term posed in an exterior domain. The linear dissipative effect may vanish in a compact space region and, moreover, the nonlinear terms need not be in a divergence form. In order to establish higher-order energy estimates, we introduce an argument based on a suitable rescaling. The proposed method is useful to control certain derivatives of the dissipation coefficient.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Rui Li ◽  
Xing Lin ◽  
Zongwei Ma ◽  
Jingjun Zhang

We study the Cauchy problem for a type of generalized Zakharov system. With the help of energy conservation and approximate argument, we obtain global existence and uniqueness in Sobolev spaces for this system. Particularly, this result implies the existence of classical solution for this generalized Zakharov system.


Sign in / Sign up

Export Citation Format

Share Document