Global existence and energy decay estimates for weak solutions to the pseudo‐parabolic equation with variable exponents

2019 ◽  
Vol 43 (5) ◽  
pp. 2516-2527
Author(s):  
Menglan Liao ◽  
Bin Guo ◽  
Qingwei Li
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Hui Wang ◽  
Caisheng Chen

AbstractIn this paper, we are interested in $L^{\infty }$ L ∞ decay estimates of weak solutions for the doubly nonlinear parabolic equation and the degenerate evolution m-Laplacian equation not in the divergence form. By a modified Moser’s technique we obtain $L^{\infty }$ L ∞ decay estimates of weak solutiona.


2018 ◽  
Vol 2018 ◽  
pp. 1-5
Author(s):  
Huashui Zhan

Consider the anisotropic parabolic equation with the variable exponentsvt=∑i=1n(bi(x)vxiqix-2vxi)xi,wherebi(x),qi(x)∈C1(Ω¯),qi(x)>1, andbi(x)≥0. If{bi(x)}is not degenerate onΣp⊂∂Ω, a part of the boundary, but is degenerate on the remained part∂Ω∖Σp, then the boundary value condition is imposed onΣp, but there is no boundary value condition required on∂Ω∖Σp. The stability of the weak solutions can be proved based on the partial boundary value conditionvx∈Σp=0.


Author(s):  
Jarkko Siltakoski

AbstractWe study the relationship of viscosity and weak solutions to the equation $$\begin{aligned} \smash {\partial _{t}u-\varDelta _{p}u=f(Du)}, \end{aligned}$$ ∂ t u - Δ p u = f ( D u ) , where $$p>1$$ p > 1 and $$f\in C({\mathbb {R}}^{N})$$ f ∈ C ( R N ) satisfies suitable assumptions. Our main result is that bounded viscosity supersolutions coincide with bounded lower semicontinuous weak supersolutions. Moreover, we prove the lower semicontinuity of weak supersolutions when $$p\ge 2$$ p ≥ 2 .


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Sujun Weng

AbstractWe study the existence of weak solutions to a Newtonian fluid∼non-Newtonian fluid mixed-type equation $$ {u_{t}}= \operatorname{div} \bigl(b(x,t){ \bigl\vert {\nabla A(u)} \bigr\vert ^{p(x) - 2}}\nabla A(u)+\alpha (x,t)\nabla A(u) \bigr)+f(u,x,t). $$ u t = div ( b ( x , t ) | ∇ A ( u ) | p ( x ) − 2 ∇ A ( u ) + α ( x , t ) ∇ A ( u ) ) + f ( u , x , t ) . We assume that $A'(s)=a(s)\geq 0$ A ′ ( s ) = a ( s ) ≥ 0 , $A(s)$ A ( s ) is a strictly increasing function, $A(0)=0$ A ( 0 ) = 0 , $b(x,t)\geq 0$ b ( x , t ) ≥ 0 , and $\alpha (x,t)\geq 0$ α ( x , t ) ≥ 0 . If $$ b(x,t)=\alpha (x,t)=0,\quad (x,t)\in \partial \Omega \times [0,T], $$ b ( x , t ) = α ( x , t ) = 0 , ( x , t ) ∈ ∂ Ω × [ 0 , T ] , then we prove the stability of weak solutions without the boundary value condition.


Sign in / Sign up

Export Citation Format

Share Document