scholarly journals Thermal fatigue damage evaluation of a PWR NPP steam generator injection nozzle model subjected to thermal stratification phenomenon

2011 ◽  
Vol 241 (3) ◽  
pp. 672-680 ◽  
Author(s):  
Luiz Leite da Silva ◽  
Tanius Rodrigues Mansur ◽  
Carlos Alberto Cimini Junior
Author(s):  
Luiz Leite da Silva ◽  
Tanius Rodrigues Mansur ◽  
Carlos Alberto Cimini

This work is related to an experimental thermal stratification study aiming to quantify thermal fatigue damages in the pipe material. Thermal fatigue damages appear as a consequence of non-linear longitudinal and circumferential loads and thermal stripping present in pipes whit thermal stratified flows. In this work an experimental section, simulating the injection nozzle of a NPP steam generator, was subjected to the effects of thermal fatigue due to thermal stratification. The experimental section was made of stainless steel pipe type AISI 304L and its geometric characteristics allowed the same range of Froude numbers of a Pressurized Water Reactor (PWR) NPP. Temperatures were measured externally and internally in three positions and deformations just externally in seven positions. Up-and-down fatigue tests were done to assess the amount of damage induced in the material experimental section. Preliminary numerical simulations were done using a coupled analysis in the ANSYS code with temperatures and pressure inputs taken from thermo hydraulic experimental results. The objectives in this work are quantify the thermal fatigue intensity imposed to the pipe material by thermal stratification experiments, verify the agreement between numerical and experimental thermal stratification results and obtain the material fatigue limit testing specimens made of pipe experimental section and from the virgin pipe. In this work is possible to conclude that stratified flows could be developed in the experimental section, thermal stratification induces considerable thermal stresses and strains in the experimental section pipe material, thermal stratification reduces the material fatigue limit, numerical and experimental results agreed appropriately in some pipe region and disagreed in others.


Author(s):  
Takashi Wakai ◽  
Sumio Kobayashi ◽  
Shoichi Kato ◽  
Masanori Ando ◽  
Hideki Takasho

This paper describes a thermal fatigue test on a structural model with a dissimilar welded joint. In the present design of Japan sodium cooled fast reactor (JSFR), there may be dissimilar welded joints between ferritic and austenitic steels especially in intermediate heat exchangers (IHX) and steam generators (SG). Creep-fatigue is one of the most important failure modes in JSFR components. However, the creep-fatigue damage evaluation method has not been established for dissimilar welded joint. To investigate the evaluation method, structural test will be needed for verification. Therefore, a thermal fatigue test on a thick-wall cylinder with a circumferential dissimilar welded joint between Mod.9Cr-1Mo steel and type 304 austenitic stainless steel (304SS) was performed. Since the coefficients of thermal expansion of these steels were significantly different, buttering layer of Ni base alloy was installed between them. After the completion of the test, deep cracks were observed at the heat affected zone (HAZ) in 304SS, as well as at HAZ in Mod.9Cr-1Mo steel. There were many tiny surface cracks in base metal (BM) of 304SS. According to the fatigue damage evaluation based on the finite element analysis results, the largest fatigue damage was calculated at HAZ in 304SS. Large fatigue damage was also estimated at BM of 304SS. Fatigue cracks were observed at HAZ and BM of 304SS in the test, so that analytical results are in a good agreement with the observations. However, though relatively small fatigue damage was estimated at HAZ in Mod.9Cr-1Mo steel, deep fatigue cracks were observed in the test. To identify the cause of such a discrepancy between the test and calculations, we performed a series of finite element analyses. Some metallurgical investigations were also performed.


Author(s):  
Shinsuke Sakai ◽  
Kei Honda ◽  
Satoshi Okajima ◽  
Satoshi Izumi ◽  
Naoto Kasahara

At an incomplete mixing area of high and low temperature fluids, fluid temperature fluctuation often occurs. It induces cyclic thermal stresses in the wall, which may result in fatigue crack initiation. Kasahara et. al. proposed the thermal fatigue evaluation method based on power spectrum density (PSD) in PVP05. This method generalizes the evaluation procedure by preparing PSD charts of fluid and frequency transfer functions of stress for various kinds of plant components. From design point of view, however, this method is too complicated due to the inverse Fourier transform and wave decomposition procedures named Rain Flow Cycle Counting (RFC). In this paper, simplified damage evaluation method for thermal fatigue is proposed by directly evaluating fatigue damage from PSD of stress. Since analytical treatment for evaluation of fatigue amplitude distribution based on PSD is difficult due to complicated procedure of RFC, direct evaluation method for RFC amplitude distribution from PSD is newly proposed. This method gives fatigue damage evaluation with safety margin. This paper shows the dependency of safety margin on geometry of PSD. Finally, application to design for thermal fatigue will be shown. Since PSD of stress in the wall near temperature fluctuation can be easily evaluated using Kasahara’s method, the proposed method will make thermal fatigue damage evaluation far easier.


Author(s):  
Salman Alrakan ◽  
Hiroshi Kuribayashi ◽  
Naoto Kasahara

In nuclear reactors, piping components are susceptible to thermal fatigue damage. This is due to the fluid temperature change along these pipelines that can generate repeated thermal loads. One of these loads is thermal stratification. Thermal stratification generates an oscillating stratified layer, which induce cyclic thermal stresses leading to fatigue damage. To evaluate thermal fatigue by thermal stratification, a frequency response function for straight pipes was developed. However, this function cannot evaluate elbow pipes under thermal stratification. Here, thermal stress generates due to bending moment that is generated by the horizontal portion unlike straight pipes. Furthermore, the elbow pipe can give rise to stress intensifications which can affect the peak stress values within the elbow. To understand the stress generation mechanism, Finite element analyses were performed. The study focused on the effect the frequency of the fluid oscillation on the stress generation mechanism. Based on the clarified mechanism, the frequency response function was improved to correspond to the thermal stratification at elbow pipes. Applicability of this function was validated through agreement with finite element simulation.


2012 ◽  
Vol 49 (5) ◽  
pp. 278-289
Author(s):  
M. Schöbel ◽  
H.P. Degischer ◽  
A. Brendel ◽  
B. Harrer ◽  
M. Di Michiel

Sign in / Sign up

Export Citation Format

Share Document