Experimental investigation on fluid–structure-coupled dynamic characteristics of the double fuel assemblies in a fast reactor

2013 ◽  
Vol 255 ◽  
pp. 180-184 ◽  
Author(s):  
Daogang Lu ◽  
Aiguo Liu ◽  
Chaohao Shang ◽  
junjie Dang ◽  
yang Hong ◽  
...  

Author(s):  
Daniel Broc ◽  
Gianluca Artini ◽  
Jérome Cardolaccia ◽  
Laurent Martin

In the frame of the GEN IV Forum and of the ASTRID Project, a program is in progress in the CEA (France) for the development and the validation of numerical tools for the simulation of the dynamic mechanical behavior of the Fast Reactor cores, with both experimental and numerical parts. The cores are constituted of Fuel Assemblies (or FA) and Neutronic Shields (or NS) immersed in the primary coolant (sodium), which circulates inside the Fuel Assemblies. The FA and the NS are slender structures, inserted in a grid plate, which may be considered as beams form a mechanical point of view. The dynamic behavior of this system has to be understood, for design and safety studies. This dynamic behavior of the core is strongly influenced by the sodium and by contacts between the beams at the pads level and at the top. The fluid leads to complex interactions between the structures in the whole core. The contacts between the beams limit the relative displacements. Two main movements have been considered so far: global horizontal movements under a seismic excitation, and opening of the core. Physical and numerical methods and tools have been developed to describe and simulate the dynamic behavior. These methods are integrated in CAST3M, general computer code developed at the CEA Saclay. The assemblies are modeled as beams. The impacts at the pads between the assemblies are taken into account by using a nonlinear model. The Fluid Structure Interaction is taken into account by using homogenization methods. This paper is devoted to the improvement of these methods to take into account the vertical component of a seismic excitation. The key points are: - the fluid structure coupling in the vertical direction, - the modification of the description of the impacts to take into account the vertical displacements of the assemblies, - the modification of the boundary condition at the foot of the assembly, in order to take into account the uplift with a nonlinear model.



2017 ◽  
Vol 102 ◽  
pp. 255-267 ◽  
Author(s):  
G. Padmakumar ◽  
K. Velusamy ◽  
B.V.S.S. Prasad ◽  
K.K. Rajan


Kerntechnik ◽  
2021 ◽  
Vol 86 (1) ◽  
pp. 45-49
Author(s):  
N. V. Maslov ◽  
E. I. Grishanin ◽  
P. N. Alekseev

Abstract This paper presents results of calculation studies of the viability of coated particles in the conditions of the reactor core on fast neutrons with sodium cooling, justifying the development of the concept of the reactor BN with microspherical fuel. Traditional rod fuel assemblies with pellet MOX fuel in the core of a fast sodium reactor are directly replaced by fuel assemblies with micro-spherical mixed (U,Pu)C-fuel. Due to the fact that the micro-spherical (U, Pu)C fuel has a developed heat removal surface and that the design solution for the fuel assembly with coated particles is horizontal cooling of the microspherical fuel, the core has additional possibilities of increasing inherent (passive) safety and improve the competitiveness of BN type of reactors. It is obvious from obtained results that the microspherical (U, Pu)C fuel is limited with the maximal burn-up depth of ∼11% of heavy atoms in conditions of the sodium-cooled fast reactor core at the conservative approach; it gives the possibility of reaching stated thermal-hydraulic and neutron-physical characteristics. Such a tolerant fuel makes it less likely that fission products will enter the primary circuit in case of accidents with loss of coolant and the introduction of positive reactivity, since the coating of microspherical fuel withstands higher temperatures than the steel shell of traditional rod-type fuel elements.



2015 ◽  
Vol 2015 (3) ◽  
pp. 85-96
Author(s):  
Ruslan Rashitovich Khafizov ◽  
Vladimir Mikhaylovich Poplavsky ◽  
Valery Ivanovich Rachkov ◽  
Aleksandr Pavlovich Sorokin ◽  
Yurij Mikhaylovich Ashurko ◽  
...  


2021 ◽  
Vol 33 (9) ◽  
pp. 093307
Author(s):  
Yunqing Liu ◽  
Biao Huang ◽  
Hanzhe Zhang ◽  
Qin Wu ◽  
Guoyu Wang


2009 ◽  
Vol 53 (04) ◽  
pp. 214-226
Author(s):  
Antoine Ducoin ◽  
François Deniset ◽  
Jacques André Astolfi ◽  
Jean-François Sigrist

The present paper is concerned with the numerical and experimental investigation of the hydroelastic behavior of a deformable hydrofoil in a uniform flow. The study is developed within the general framework of marine structure design and sizing. An experimental setup is developed in the IRENav hydrodynamic tunnel in which a cambered rectangular hydrofoil is mounted. An image-processing device enables the visualization of the foil displacement. As for the numerical part, the structure problem is solved with the finite element method, while the fluid problem is solved with the finite volume method using two distinct numerical codes that are coupled through an iterative algorithm based on the exchange of the boundary conditions at the fluid-structure interface. Results obtained from the coupled fluid-structure computations including deformation and hydrodynamic coefficients are presented. The influence of the fluid-structure coupling is evaluated through comparisons with "noncoupled" simulations. The numerical simulations are in very good agreement with the experimental results and highlight the importance of the fluid-structure coupling consideration. Particular attention is paid to the pressure distribution modification on the hydrofoil as a result of deformations that can lead to an advance of the cavitation inception, which is of paramount importance for naval applications.



Sign in / Sign up

Export Citation Format

Share Document