Experimental Investigation for Dynamic Characteristics of the Active Magnetic Bearing Rotor System with Zero Bias Current

2013 ◽  
Vol 49 (15) ◽  
pp. 68 ◽  
Author(s):  
Zhenyu XIE
2011 ◽  
Vol 109 ◽  
pp. 199-203
Author(s):  
Wei Wei Zhang

To investigate the active magnetic bearing-rotor system which is influenced by the base motion, coupled dynamic model is developed in this paper. The effects of base motion, electrical differential equations of control system and the mounting of sensors at different positions on the dynamic characteristics of the magnetic bearing-rotor system were discussed. The feasibility of the dynamic model is illustrated. This dynamic model can be used for the coupled electromechanical dynamics analysis of rotor system equipped with magnetic bearings.


Author(s):  
Hai Rong ◽  
Kai Zhou

The zero-bias current controlled way is proposed to cut down the power consumption of the active magnetic bearing in a power magnetically levitated spindle system. The zero-bias current controlled way is easier to realize than the zero-bias flux controlled way, since current can be detected directly, while flux is hard to be measured in practice. Besides, the active magnetic bearing suffers from lumped uncertainty including parameter uncertainty and external load, and the displacement of rotor caused by lumped uncertainty is undesirable. In practice, the upper bound of the lumped uncertainty especially the external load is hard to obtain, making it hard to choose parameters for a traditional sliding mode control. The adaptive backstepping sliding mode control method combining both the advantages of sliding mode procedure and backstepping procedure is proposed to solve this problem. Furthermore, the upper bound of lumped uncertainty is estimated in real time by an adaptive law. In this paper, first a new zero-bias current active magnetic bearing system model with lumped uncertainty is built; then two controllers based on the sliding mode control and adaptive backstepping sliding mode control methods are designed, respectively, and the stability analyses are given for the two controllers via Lyapunov function; finally, the effectiveness of the proposed adaptive backstepping sliding mode control approach for a zero-bias current active magnetic bearing system is verified by the simulation and experiment results.


Author(s):  
Changsheng Zhu ◽  
David A. Robb ◽  
David J. Ewins

The dynamic characteristics of a cracked rotor with an active magnetic bearing (AMB) are theoretically analyzed in this paper. The effects of using optimal controller parameters on the dynamic characteristics of the cracked rotor and the effect of the crack on the stability of the active control system are discussed. It is shown that the dynamic characteristics of the cracked rotor with AMBs are clearly more complex than that of the traditional cracked rotor system. Adaptive control with AMBs may hide the fault characteristics of the cracked rotor, rather than helping to diagnose a crack; this will depend on the controller strategy used. It is very difficult to detect a crack in the AMB-rotor system when the vibration of the rotor system is fully controlled. Only the super-harmonic components of 2X and 3X revolution in the sub-critical speed region can be used as a index to detect a crack in the rotor–AMB system. If the effect of the crack is not considered in designing the controller, then the AMB-rotor system will lose its stability in some cases when cracks appear.


2021 ◽  
Vol 104 (1) ◽  
pp. 103-123
Author(s):  
Xiaoshen Zhang ◽  
Zhe Sun ◽  
Lei Zhao ◽  
Xunshi Yan ◽  
Jingjing Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document