scholarly journals Measurements of jet quenching and heavy flavor production with the ATLAS detector

2013 ◽  
Vol 910-911 ◽  
pp. 12-19
Author(s):  
A. Angerami
2020 ◽  
Vol 35 (34n35) ◽  
pp. 2044003
Author(s):  
Tatiana Lyubushkina

The associated production a vector boson with [Formula: see text] is a key observable for understanding of the quarkonium production mechanisms, including the separation of single and double parton scattering components. Measurements from the ATLAS detector at LHC on quarkonium production, including associated production of a [Formula: see text] and [Formula: see text] are presented. A study of the hidden-charm states [Formula: see text] is also provided.


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Shu-Qing Li ◽  
Wen-Jing Xing ◽  
Xiang-Yu Wu ◽  
Shanshan Cao ◽  
Guang-You Qin

AbstractWe explore the system size dependence of heavy-quark-QGP interaction by studying the heavy flavor meson suppression and elliptic flow in Pb–Pb, Xe–Xe, Ar–Ar and O–O collisions at the LHC. The space-time evolution of the QGP is simulated using a $$(3+1)$$ ( 3 + 1 ) -dimensional viscous hydrodynamic model, while the heavy-quark-QGP interaction is described by an improved Langevin approach that includes both collisional and radiative energy loss inside a thermal medium. Within this framework, we provides a reasonable description of the D meson suppression and flow coefficients in Pb–Pb collisions, as well as predictions for both D and B meson observables in other collision systems yet to be measured. We find a clear hierarchy for the heavy meson suppression with respect to the size of the colliding nuclei, while their elliptic flow coefficient relies on both the system size and the geometric anisotropy of the QGP. Sizable suppression and flow are predicted for both D and B mesons in O–O collisions, which serve as a crucial bridge of jet quenching between large and small collision systems. Scaling behaviors between different collision systems are shown for heavy meson suppression factor and the bulk-eccentricity-rescaled heavy meson elliptic flow as functions of the number of participant nucleons in heavy-ion collisions.


Author(s):  
Takashi Hachiya

Heavy flavor production is a sensitive probe of the initial gluon density in the nucleon and is modified by the entire evolution of the hot quark and gluon medium created in high-energy nucleus–nucleus collisions. Besides, it is a process that can be calculated by perturbative QCD because of their large mass. The PHENIX experiment at RHIC studied the heavy flavor productions for a broad momentum and rapidity ranges using single leptons from the semileptonic decay of charm and bottom hadrons, and dileptons from [Formula: see text] decays in [Formula: see text], [Formula: see text]A, and Au [Formula: see text] Au collisions at [Formula: see text][Formula: see text]200[Formula: see text]GeV. In these proceedings, the recent experimental results in [Formula: see text], Au [Formula: see text] Au, and the small collision systems are presented and the heavy flavor productions and their modifications are discussed.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Daniel Kikoła

Dielectron signal reconstruction is an important tool for heavy flavor measurements because of its trigger feasibility and its relatively straightforward particle identification process. However, in the case of time projection chamber detectors, some hadron contamination is unavoidable, even if additional means are used to improve the particle identification process. In this paper, we investigate the effects of hadron (protons, pions, and kaons) contamination on the dielectron signal reconstruction process in the measurement ofJ/ψand electrons from heavy flavor hadron decays.


2018 ◽  
Vol 172 ◽  
pp. 01001
Author(s):  
Alexandre Lebedev

The study of heavy flavor production in proton-nucleus and nucleus-nucleus collisions is a sensitive probe of the hot and dense matter created in such collisions. Installation of silicon vertex detectors in the PHENIX experiment, and increased performance of the BNL RHIC collider allowed collection of large amount of data on heavy flavor production in small colliding systems. In this talk we will present recent PHENIX results on open heavy flavor and quarkonia production in p+p, p+A, d+A, and He3+A colliding systems in a broad rapidity range, and discuss how these measurements help us to better understand all stages of nuclear collisions at high energy.


Sign in / Sign up

Export Citation Format

Share Document