scholarly journals Assessment of boundary-element method for modelling a free-floating sloped wave energy device. Part 2: Experimental validation

2008 ◽  
Vol 35 (3-4) ◽  
pp. 342-357 ◽  
Author(s):  
Grégory S. Payne ◽  
Jamie R.M. Taylor ◽  
Tom Bruce ◽  
Penny Parkin
Author(s):  
Mario Lopez ◽  
Francisco Taveira-Pinto ◽  
Paulo Rosa-Santos

This paper deals with the numerical modelling of an innovative technology for harnessing wave energy and its power take-off system. The investigated wave energy converter is CECO, a device based on the principles of oscillating bodies that is being developed at the Faculty of Engineering of the University of Porto, Portugal. The particularity of this concept lies on the relative motion between a floating part and a supporting one, which is restricted to translations along an inclined direction. First, the wave energy converter is modelled in the frequency domain by means of a panel model that is based on the boundary element method. Once obtained the frequency-dependent hydrodynamic coefficients of the floating part, the dynamic equation of motion is solved in the time domain by including, not only the hydrodynamic forces, but also the force of the power take-off system. The results prove the ability of the numerical modelling approach to simulate the behavior of the device and provide insight into its performance.


1995 ◽  
Vol 5 (6) ◽  
pp. 621-638 ◽  
Author(s):  
J. H. Hilbing ◽  
Stephen D. Heister ◽  
C. A. Spangler

1993 ◽  
Vol 21 (2) ◽  
pp. 66-90 ◽  
Author(s):  
Y. Nakajima ◽  
Y. Inoue ◽  
H. Ogawa

Abstract Road traffic noise needs to be reduced, because traffic volume is increasing every year. The noise generated from a tire is becoming one of the dominant sources in the total traffic noise because the engine noise is constantly being reduced by the vehicle manufacturers. Although the acoustic intensity measurement technology has been enhanced by the recent developments in digital measurement techniques, repetitive measurements are necessary to find effective ways for noise control. Hence, a simulation method to predict generated noise is required to replace the time-consuming experiments. The boundary element method (BEM) is applied to predict the acoustic radiation caused by the vibration of a tire sidewall and a tire noise prediction system is developed. The BEM requires the geometry and the modal characteristics of a tire which are provided by an experiment or the finite element method (FEM). Since the finite element procedure is applied to the prediction of modal characteristics in a tire noise prediction system, the acoustic pressure can be predicted without any measurements. Furthermore, the acoustic contribution analysis obtained from the post-processing of the predicted results is very helpful to know where and how the design change affects the acoustic radiation. The predictability of this system is verified by measurements and the acoustic contribution analysis is applied to tire noise control.


Sign in / Sign up

Export Citation Format

Share Document