Modeling and analysis of flammable gas dispersion and deflagration from offshore platform blowout

2020 ◽  
Vol 201 ◽  
pp. 107146 ◽  
Author(s):  
Xinhong Li ◽  
Rouzbeh Abbassi ◽  
Guoming Chen ◽  
Qingsheng Wang
Author(s):  
Q G Zheng ◽  
W Q Wu ◽  
M Song

The engine fuel piping in LNG-fuelled ships’ engine room presents potential gas explosion risks due to possible gas fuel leakage and dispersion. A 3D CFD model with chemical reaction was described, validated and then used to simulate the possible gas dispersion and the consequent explosions in an engine room with regulations commanded ventilations. The results show that, with the given minor leaking of a fuel pipe, no more than 1kg of methane would accumulate in the engine room. The flammable gas clouds only exit in limited region and could lead to explosions with an overpressure about 12 mbar, presenting no injury risk to personnel. With the given major leaking, large region in the engine room would be filled with flammable gas cloud within tens of seconds. The gas cloud might lead to an explosion pressure of about 1 bar or higher, which might result in serious casualties in the engine room.


2019 ◽  
Vol 161 (A3) ◽  

The engine fuel piping in LNG-fuelled ships’ engine room presents potential gas explosion risks due to possible gas fuel leakage and dispersion. A 3D CFD model with chemical reaction was described, validated and then used to simulate the possible gas dispersion and the consequent explosions in an engine room with regulations commanded ventilations. The results show that, with the given minor leaking of a fuel pipe, no more than 1kg of methane would accumulate in the engine room. The flammable gas clouds only exit in limited region and could lead to explosions with an overpressure about 12 mbar, presenting no injury risk to personnel. With the given major leaking, large region in the engine room would be filled with flammable gas cloud within tens of seconds. The gas cloud might lead to an explosion pressure of about 1 bar or higher, which might result in serious casualties in the engine room.


Author(s):  
Z. Chen ◽  
S. Konecni ◽  
J. J. Whicker

In this study, a commercial computational fluid dynamics (CFD) code, CFX-5.5, was utilized to assess flow field characteristics, and to simulate tritium gas releases and subsequent transport in a storage room in the tritium handling facility at Los Alamos. This study was done with mesh refinement and results compared. The results show a complex, ventilation-induced flow field with vortices, velocity gradients, and stagnant air pockets. This paper also explains the time-dependent gas dispersion results. The numerical analysis method used in this study provides important information that is possible to be validated with an experimental technique of aerosol tracer measurement method frequently used at Los Alamos. Application of CFD can have a favorable impact on the design of ventilation systems and worker safety with consideration to facility costs.


2018 ◽  
Vol 163 ◽  
pp. 157-168 ◽  
Author(s):  
Xinhong Li ◽  
Guoming Chen ◽  
Hongwei Zhu ◽  
Changhang Xu

2018 ◽  
Vol 114 ◽  
pp. 48-63 ◽  
Author(s):  
Jihao Shi ◽  
Jingde Li ◽  
Yuan Zhu ◽  
Hong Hao ◽  
Guoming Chen ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Lifeng Li ◽  
Jinheng Luo ◽  
Gang Wu ◽  
Xinhong Li ◽  
Nan Ji ◽  
...  

This study conducts an impact assessment of flammable gas dispersion and fire hazards from LNG tank leak. The release source model is used to estimate LNG release rate. A CFD (computational fluid dynamics) based 3D model is established to simulate dispersion behavior of flammable gas from the phase transformation of LNG. Subsequently, a FDS (fire dynamics) based model is built to simulate the pool fire due to LNG tank leak. The impact of gas dispersion and fire on personnel and assets is assessed based on simulation results, which can provide a theoretical basis and method support for major accident assessment of tank leakage in large LNG receiving station. The results show that the dispersion of flammable gas from LNG tank leak has an obvious stage characteristic. The flammable gas reached a steady state around 300 s, and the corresponding coverage area is about 16250 m2. The pool fire simulations indicate that the steady flame is formed at 20 s. The flames flow along the wind, and the maximum temperature of the fire reaches 670°C, and the maximum thermal radiation reaches 624 kW/m2. According to the fire damage criteria, the pool fire from LNG tank leak may pose a serious threat on the safety of adjacent assets and personnel.


Sign in / Sign up

Export Citation Format

Share Document