Interaction of solitary wave with submerged breakwater by smoothed particle hydrodynamics

2020 ◽  
Vol 216 ◽  
pp. 108108
Author(s):  
Xinyu Han ◽  
Sheng Dong
Author(s):  
Hongjie Wen ◽  
Bing Ren

A viscous 3D numerical wave basin for high nonlinear waves was developed based on Smoothed Particle Hydrodynamics (SPH) method. The computational accuracy of SPH method is mainly improved by introducing the Corrective Smoothed Particle Hydrodynamics Method (CSPM) and a novel pressure correction scheme. The incident waves are generated from the inflow boundary by prescribing a velocity profile of the flap-type wavemaker motions, and the outgoing waves are numerically dissipated inside an artificial damping zone located at the end of the basin. Moreover, the parallelization of the improved 3D SPH scheme has been carried out using a hybrid MPI-OpenMP programming, together with a dynamic load balancing strategy to improve the computational efficiency. The generation and propagation of regular wave and solitary wave have been simulated. Wave forces induced by regular wave acting on a large-diameter circular cylinder and solitary wave passing over a submerged breakwater are also presented to verify the accuracy of SPH model. In addition, several computing cases of different particle resolutions are investigated and a high parallel efficiency is obtained.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Afshin Mansouri ◽  
Babak Aminnejad

Interaction of a solitary wave and submerged breakwater is studied in a meshless, Lagrangian approach. For this purpose, a two-dimensional smoothed particle hydrodynamics (SPH) code is developed. Furthermore, an extensive set of simulations is conducted. In the first step, the generated solitary wave is validated. Subsequently, the interaction of solitary wave and submerged breakwater is investigated thoroughly. Results of the interaction of solitary wave and a submerged breakwater are also shown to be in good agreement with published experimental studies. Afterwards, the effects of the inclination and length of breakwater as well as distance between two breakwaters are evaluated on damping ratio of breakwater.


Author(s):  
Soroush Abolfathi ◽  
Dong Shudi ◽  
Sina Borzooei ◽  
Abbas Yeganeh-Bakhtiari ◽  
Jonathan Pearson

This study develops an accurate numerical tool for investigating optimal retrofit configurations in order to minimize wave overtopping from a vertical seawall due to extreme climatic events and under changing climate. A weakly compressible smoothed particle hydrodynamics (WCSPH) model is developed to simulate the wave-structure interactions for coastal retrofit structures in front of a vertical seawall. A range of possible physical configurations of coastal retrofits including re-curve wall and submerged breakwater are modelled with the numerical model to understand their performance under different wave and structural conditions. The numerical model is successfully validated against laboratory data collected in 2D wave flume at Warwick Water Laboratory. The findings of numerical modelling are in good agreement with the laboratory data. The results indicate that recurve wall is more effective in mitigating wave overtopping and provides more resilience to coastal flooding in comparison to base-case (plain vertical wall) and submerged breakwater retrofit.


2018 ◽  
Vol 1 (36) ◽  
pp. 109 ◽  
Author(s):  
Soroush Abolfathi ◽  
Dong Shudi ◽  
Sina Borzooei ◽  
Abbas Yeganeh-Bakhtiari ◽  
Jonathan Pearson

This study develops an accurate numerical tool for investigating optimal retrofit configurations in order to minimize wave overtopping from a vertical seawall due to extreme climatic events and under changing climate. A weakly compressible smoothed particle hydrodynamics (WCSPH) model is developed to simulate the wave-structure interactions for coastal retrofit structures in front of a vertical seawall. A range of possible physical configurations of coastal retrofits including re-curve wall and submerged breakwater are modelled with the numerical model to understand their performance under different wave and structural conditions. The numerical model is successfully validated against laboratory data collected in 2D wave flume at Warwick Water Laboratory. The findings of numerical modelling are in good agreement with the laboratory data. The results indicate that recurve wall is more effective in mitigating wave overtopping and provides more resilience to coastal flooding in comparison to base-case (plain vertical wall) and submerged breakwater retrofit.


2008 ◽  
Vol 96 (6) ◽  
pp. 263-268 ◽  
Author(s):  
E. Mounif ◽  
V. Bellenger ◽  
A. Ammar ◽  
R. Ata ◽  
P. Mazabraud ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document