Lattice Boltzmann analysis of fluid structure interaction mechanism around a row of five side-by-side square cylinders

2021 ◽  
Vol 238 ◽  
pp. 109738
Author(s):  
Hamid Rahman ◽  
Shams-ul Islam ◽  
Israr Ali ◽  
Muhammad Uzair Khan ◽  
Waqas Sarwar Abbasi ◽  
...  
Author(s):  
Lichun Li ◽  
Shanshan Li ◽  
Zhe Yan ◽  
Zhenhai Pan

Abstract This paper investigates the dynamic response of two freely rotatable rigid square cylinders to two-dimensional laminar flow in a microchannel. The square cylinders are laterally pinned side-by-side in the microchannel with a single freedom of rotation. Finite volume method coupled with a dynamic mesh technique is developed and validated to reveal the detailed motion characteristics of the cylinders and nearby flow structures. Under small Reynolds number (Re = 50), both cylinders oscillate periodically. The oscillate curves (rotating angle v.s. time) are symmetrical with each other but with a certain phase difference. At Re = 150, both cylinders oscillate randomly. Under high Reynolds number (Re = 300), the two cylinders both keep rotating in the opposite direction with the velocity magnitude fluctuating drastically around 1.75. Important motion details are presented to understand the Fluid-Structure interaction mechanism under different Reynolds number, including the time history of rotating angles and rotating velocities, lift and drag coefficients on the cylinders, distribution of pressure around the cylinder sides. Both pressure-induced torque and the shear induced one are obtained and their contributions to both cylinders’ rotation characteristics are quantitatively evaluated. Vortex structures and streamlines around the cylinders at specific moments are also revealed in this paper to help understanding the fluid-structure interaction phenomenon.


2016 ◽  
Vol 08 (08) ◽  
pp. 1650095 ◽  
Author(s):  
H. Devaraj ◽  
Kean C. Aw ◽  
E. Haemmerle ◽  
R. Sharma

3D printed hair-like micro-structures have been previously demonstrated in a novel micro-fluidic flow sensor aimed at sensing air flows down to rates of a few milliliters per second. However, there is a lack of in-depth understanding of the structural response of these ‘micro-hairs' under a fluid flow field. This paper demonstrates the use of lattice Boltzmann methods (LBM) to understand this structural response towards a better optimization of the micro-hair flow sensors designed to suit the end applications' needs. The LBM approach was chosen as an efficient alternative to simulate Navier–Stokes equations for modeling fluid flow around complex geometries primarily for improved accuracy and simplicity with lesser computational costs. As the spatial dimensions of the sensor's flow channel are much larger in comparison to the actual micro-hairs (the sensing element), a multidimensional approach of combining two-dimensional (D2Q9) and three-dimensional (D3Q19) lattice configurations were implemented for improved computational speeds and efficiency. The drag force on the micro-hairs was estimated using the momentum-exchange method in the D3Q19 configuration and this drag force is transferred to the structural analysis model which determines the micro-hair deformation using Euler–Bernoulli beam theory. The entirety of the LBM Fluid–Structure Interaction (FSI) model was implemented within MATLAB and the obtained results are compared against the numerical model implemented on a commercially available software package.


Author(s):  
Y. W. Kwon

In order to analyze the Fluid-Structure Interaction (FSI) between a flow and a flexible structure, an algorithm was presented to couple the Lattice Boltzmann Method (LBM) and the Finite Element Method (FEM). The LBM was applied to the fluid dynamics while the FEM was applied to the structural dynamics. The two solution techniques were solved in a staggered manner, i.e. one solver after another. Continuity of the velocity and traction was applied at the interface boundaries between the fluid and structural domains. Furthermore, so as to make the fluid-structure interface boundary more flexible in terms of the computational modeling perspective, a technique was also developed for the LBM so that the interface boundary might not coincide with the fluid lattice mesh. Some example problems were presented to demonstrate the developed techniques.


2018 ◽  
Vol 29 (04) ◽  
pp. 1850038 ◽  
Author(s):  
Chun-Lin Gong ◽  
Zhe Fang ◽  
Gang Chen

A numerical approach based on the immersed boundary (IB), lattice Boltzmann and nonlinear finite element method (FEM) is proposed to simulate hydrodynamic interactions of very flexible objects. In the present simulation framework, the motion of fluid is obtained by solving the discrete lattice Boltzmann equations on Eulerian grid, the behaviors of flexible objects are calculated through nonlinear dynamic finite element method, and the interactive forces between them are implicitly obtained using velocity correction IB method which satisfies the no-slip conditions well at the boundary points. The efficiency and accuracy of the proposed Immersed Boundary-Lattice Boltzmann-Finite Element method is first validated by a fluid–structure interaction (F-SI) benchmark case, in which a flexible filament flaps behind a cylinder in channel flow, then the nonlinear vibration mechanism of the cylinder-filament system is investigated by altering the Reynolds number of flow and the material properties of filament. The interactions between two tandem and side-by-side identical objects in a uniform flow are also investigated, and the in-phase and out-of-phase flapping behaviors are captured by the proposed method.


2018 ◽  
Vol 168 ◽  
pp. 32-45 ◽  
Author(s):  
Kyriakos Flouris ◽  
Miller Mendoza Jimenez ◽  
Gautam Munglani ◽  
Falk K. Wittel ◽  
Jens-Daniel Debus ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document