Breaking wave bubble measurements around ship model by optical probe

2022 ◽  
Vol 246 ◽  
pp. 110438
Author(s):  
Bachar Mallat ◽  
Grégory Germain ◽  
Jean-Yves Billard ◽  
Céline Gabillet
Author(s):  
Jianhua Wang ◽  
Zhen Ren ◽  
Decheng Wan

The KRISO container ship model is used for numerical simulations to investigate hydrodynamic performance under high speeds. Unsteady Reynolds-Averaged Navier-Stokes (URANS) and delayed detached eddy simulation (DDES) approaches are used to resolve the flow field around the ship model. High-resolution Volume of Fluid (VOF) technique in OpenFOAM is used to capture the free surface. The present work focuses on the wave-breaking phenomena of high-speed ships. To study the speed effects on the phenomenon of ship bow wave breaking, three different speeds, i.e., Fn = .26, .35, and .40, are investigated for a fixed ship model in calm water. Predicted resistance and wave patterns under Fn = .26 are validated with available experimental data, and a good agreement is achieved. The breaking wave phenomena can be observed from both URANS and DDES results for Froude numbers greater than .35. And the Fn = .40 case shows more violent breaking bow waves. The process of overturning and breaking of bow wave is more complex in the DDES results, and some small-scale free surface features are also captured. The predicted bow wave is compared with the experiment conducted at the China Ship Scientific Research Center. It shows that the DDES results are more accurate. Wave profiles and vorticity field at several cross sections are presented to illustrate the relationship between bow waves and vortices. It is found that the free surface vorticity dissipates quickly in the URANS simulation, which leads to the difference compared with the DDES results.


2003 ◽  
Vol 8 (2) ◽  
pp. 68-75 ◽  
Author(s):  
Angelo Olivieri ◽  
Fabrizio Pistani ◽  
Andrea Di Mascio
Keyword(s):  

1968 ◽  
Vol 1968 (124) ◽  
pp. 125-139
Author(s):  
Koichi Yokoo ◽  
Tatsuo Ito ◽  
Ryo Tasaki ◽  
Hajime Takahashi ◽  
Hiraku Tanaka

2009 ◽  
Author(s):  
Anne M. Fullerton ◽  
Ann Marie Powers ◽  
Don C. Walker ◽  
Susan Brewton

2016 ◽  
Author(s):  
Richard A. Royce
Keyword(s):  

1987 ◽  
Vol 52 (6) ◽  
pp. 1386-1396 ◽  
Author(s):  
Ján Mocák ◽  
Michal Németh ◽  
Mieczyslaw Lapkowski ◽  
Jerzy W. Strojek

A spectrocoulometric macrocell with a direct-view optical probe was designed and constructed, where the optical signal is transferred by light-conducting glass or quartz fibres permitting to work at wavelengths above 410 or 300 nm. The method of measurement on the proposed equipment is described; it was tested in the study of the mechanism and kinetics of oxidation of Fe(bipy)32+ ions (bipy = 2,2'-bipyridyl) with the use of potentiostatic coulometric electrolysis with open-circuit relaxation at a suitable time. The primary product of electrolysis, Fe(bipy)33+, undergoes a follow-up hydrolytic reaction with the formation of a binuclear complex. The rate constant of the reaction of the first order involves the contributions, kBi, from all bases present in solution; the corresponding values for H2O, OH-, bipy, and CH3COO- ions at a ionic strength 0·5 mol dm-3 and 25 °C were determined as kOH = (5·0 ± 0·6) . 105 mol-1 dm3 s-1, kbipy = (1·3 ± 0·2) . 10-1 mol-1 dm3 s-1, kAc = (5·8 ± 1·0) . 10-2 mol-1 dm3 s-1, and kH2O is not significant with respect to experimental errors.


Sign in / Sign up

Export Citation Format

Share Document