Reynolds number dependence of mixing in a lock-exchange system from direct numerical and large eddy simulations

2009 ◽  
Vol 30 (2-3) ◽  
pp. 190-206 ◽  
Author(s):  
Tamay M. Özgökmen ◽  
Traian Iliescu ◽  
Paul F. Fischer
Author(s):  
Cody Dowd ◽  
Danesh Tafti

The focus of this research is to predict the flow and heat transfer in a rotating two-pass duct geometry with staggered ribs using Large-Eddy Simulations (LES). The geometry consists of a U-Bend with 17 ribs in each pass. The ribs are staggered with an e/Dh = 0.1 and P/e = 10. LES is performed at a Reynolds number of 100,000, a rotation number of 0.2 and buoyancy parameters (Bo) of 0.5 and 1.0. The effects of Coriolis forces and centrifugal buoyancy are isolated and studied individually. In all cases it is found that increasing Bo from 0.5 to 1.0 at Ro = 0.2 has little impact on heat transfer. It is found that in the first pass, the heat transfer is quite receptive to Coriolis forces which augment and attenuate heat transfer at the trailing and leading walls, respectively. Centrifugal buoyancy, on the other hand has a bigger effect in augmenting heat transfer at the trailing wall than in attenuating heat transfer at the leading wall. On contrary, it aids heat transfer in the second half of the first pass at the leading wall by energizing the flow near the wall. The heat transfer in the second pass is dominated by the highly turbulent flow exiting the bend. Coriolis forces have no impact on the augmentation of heat transfer on the leading wall till the second half of the passage whereas it attenuates heat transfer at the trailing wall as soon as the flow exits the bend. Contrary to phenomenological arguments, inclusion of centrifugal buoyancy augments heat transfer over Coriolis forces alone on both the leading and trailing walls of the second pass.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012030
Author(s):  
E I Ivashchenko ◽  
M Yu Hrebtov ◽  
R I Mullyadzhanov

Abstract Large-eddy simulations are performed to investigate the cavitating flow around two dimensional hydrofoil section with angle of attack of 9° and high Reynolds number of 1.3×106. We use the Schnerr-Sauer model for accurate phase transitions modelling. Instantaneous velocity fields are compared successfully with PIV data using the methodology of conditional averaging to take into account only the liquid phase characteristics as in PIV. The presence of two frequencies in a spectrum corresponding to the full and partial cavity detachments is analysed.


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Dario Amirante ◽  
Nicholas J. Hills

Large-eddy simulations (LES) of wall bounded, low Mach number turbulent flows are conducted using an unstructured finite-volume solver of the compressible flow equations. The numerical method employs linear reconstructions of the primitive variables based on the least-squares approach of Barth. The standard Smagorinsky model is adopted as the subgrid term. The artificial viscosity inherent to the spatial discretization is maintained as low as possible reducing the dissipative contribution embedded in the approximate Riemann solver to the minimum necessary. Comparisons are also discussed with the results obtained using the implicit LES (ILES) procedure. Two canonical test-cases are described: a fully developed pipe flow at a bulk Reynolds number Reb = 44 × 103 based on the pipe diameter, and a confined rotor–stator flow at the rotational Reynolds number ReΩ = 4 × 105 based on the outer radius. In both cases, the mean flow and the turbulent statistics agree well with existing direct numerical simulations (DNS) or experimental data.


Author(s):  
Mohamed Abdelhady ◽  
David H. Wood

Abstract Stranded overhead conductor cables are used to transfer electric power, often over large distances. Conductor geometry, as well as environmental conditions, affect the power carrying capacity. This paper studies the flow dynamics and heat transfer for one stranded conductor geometry in air at Reynolds number of 1,000, determined using dynamic Smagorinsky Large Eddy Simulations. Proper Orthogonal Decomposition was used to identify coherent structures. In comparison to a smooth circular cylinder, the conductor strands noticeably affect the flow dynamics and heat transfer, locally and globally.


2015 ◽  
Vol 137 (9) ◽  
Author(s):  
W. Sidebottom ◽  
A. Ooi ◽  
D. Jones

Flow over a circular cylinder at a Reynolds number of 3900 is investigated using large eddy simulations (LES) to assess the affect of four numerical parameters on the resulting flow-field. These parameters are subgrid scale (SGS) turbulence models, wall models, discretization of the advective terms in the governing equations, and grid resolution. A finite volume method is employed to solve the incompressible Navier–Stokes equations (NSE) on a structured grid. Results are compared to the experiments of Ong and Wallace (1996, “The Velocity Field of the Turbulent Very Near Wake of a Circular Cylinder,” Exp. Fluids, 20(6), pp. 441–453) and Lourenco and Shih (1993, “Characteristics of the Plane Turbulent Near Wake of a Circular Cylinder: A Particle Image Velocimetry Study,” private communication (taken from Ref. [2]); and the numerical results of Beaudan and Moin (1994, “Numerical Experiments on the Flow Past a Circular Cylinder at Sub-Critical Reynolds Number,” Technical Report No. TF-62), Kravchenko and Moin (2000, “Numerical Studies of Flow Over a Circular Cylinder at ReD = 3900,” Phys. Fluids, 12(2), pp. 403–417), and Breuer (1998, “Numerical and Modelling Influences on Large Eddy Simulations for the Flow Past a Circular Cylinder,” Int. J. Heat Fluid Flow, 19(5), pp. 512–521). It is concluded that the effect of the SGS models is not significant; results with and without a wall model are inconsistent; nondissipative discretization schemes, such as central finite difference methods, are preferred over dissipative methods, such as upwind finite difference methods; and it is necessary to properly resolve the boundary layer in the vicinity of the cylinder in order to accurately model the complex flow phenomena in the cylinder wake. These conclusions are based on the analysis of bulk flow parameters and the distribution of mean and fluctuating quantities throughout the domain. In general, results show good agreement with the experimental and numerical data used for comparison.


Sign in / Sign up

Export Citation Format

Share Document