Modeling oil spills transportation in seas based on unstructured grid, finite-volume, wave-ocean model

2010 ◽  
Vol 35 (4) ◽  
pp. 332-344 ◽  
Author(s):  
Jinhua Wang ◽  
Yongming Shen
Oceanography ◽  
2006 ◽  
Vol 19 (1) ◽  
pp. 78-89 ◽  
Author(s):  
Changsheng Chen ◽  
Roberet Beardsley ◽  
Geoffrey Cowles

Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2752
Author(s):  
Jun Lee ◽  
Jungwoo Lee ◽  
Sang-Leen Yun ◽  
Seog-Ku Kim

We developed a three-dimensional unstructured grid coastal and estuarine circulation model, named the General Ocean Model (GOM). Combining the finite volume and finite difference methods, GOM achieved both the exact conservation and computational efficiency. The propagation term was implemented by a semi-implicit numerical scheme, the so-called θ scheme, and the time-explicit Eulerian–Lagrangian method was used to discretize the nonlinear advection term to remove the major limitation of the time step, which appears when solving shallow water equations, by the Courant–Friedrichs–Lewy stability condition. Because the GOM uses orthogonal unstructured computational grids, allowing both triangular and quadrilateral grids, considerable flexibility to resolve complex coastal boundaries is allowed without any transformation of governing equations. The GOM was successfully verified with five analytical solutions, and it was also validated when applied to the Texas coast, showing an overall skill value of 0.951. The verification results showed that the algorithm used in GOM was correctly coded, and it is efficient and robust.


Author(s):  
Changsheng Chen ◽  
Guoping Gao ◽  
Jianhua Qi ◽  
Andrey Proshutinsky ◽  
Robert C. Beardsley ◽  
...  

2021 ◽  
Vol 9 (3) ◽  
pp. 279
Author(s):  
Zhehao Yang ◽  
Weizeng Shao ◽  
Yuyi Hu ◽  
Qiyan Ji ◽  
Huan Li ◽  
...  

Marine oil spills occur suddenly and pose a serious threat to ecosystems in coastal waters. Oil spills continuously affect the ocean environment for years. In this study, the oil spill caused by the accident of the Sanchi ship (2018) in the East China Sea was hindcast simulated using the oil particle-tracing method. Sea-surface winds from the European Centre for Medium-Range Weather Forecasts (ECMWF), currents simulated from the Finite-Volume Community Ocean Model (FVCOM), and waves simulated from the Simulating WAves Nearshore (SWAN) were employed as background marine dynamics fields. In particular, the oil spill simulation was compared with the detection from Chinese Gaofen-3 (GF-3) synthetic aperture radar (SAR) images. The validation of the SWAN-simulated significant wave height (SWH) against measurements from the Jason-2 altimeter showed a 0.58 m root mean square error (RMSE) with a 0.93 correlation (COR). Further, the sea-surface current was compared with that from the National Centers for Environmental Prediction (NCEP) Climate Forecast System Version 2 (CFSv2), yielding a 0.08 m/s RMSE and a 0.71 COR. Under these circumstances, we think the model-simulated sea-surface currents and waves are reliable for this work. A hindcast simulation of the tracks of oil slicks spilled from the Sanchi shipwreck was conducted during the period of 14–17 January 2018. It was found that the general track of the simulated oil slicks was consistent with the observations from the collected GF-3 SAR images. However, the details from the GF-3 SAR images were more obvious. The spatial coverage of oil slicks between the SAR-detected and simulated results was about 1 km2. In summary, we conclude that combining numerical simulation and SAR remote sensing is a promising technique for real-time oil spill monitoring and the prediction of oil spreading.


2017 ◽  
Vol 29 (4) ◽  
pp. 679-690 ◽  
Author(s):  
Xu-dong Zhao ◽  
Shu-xiu Liang ◽  
Zhao-chen Sun ◽  
Xi-zeng Zhao ◽  
Jia-wen Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document