scholarly journals A new high-resolution unstructured grid finite volume Arctic Ocean model (AO-FVCOM): An application for tidal studies

Author(s):  
Changsheng Chen ◽  
Guoping Gao ◽  
Jianhua Qi ◽  
Andrey Proshutinsky ◽  
Robert C. Beardsley ◽  
...  
Oceanography ◽  
2006 ◽  
Vol 19 (1) ◽  
pp. 78-89 ◽  
Author(s):  
Changsheng Chen ◽  
Roberet Beardsley ◽  
Geoffrey Cowles

Author(s):  
Hidekazu Shirai ◽  
Ritsuki Kunisato ◽  
Shinya Magome ◽  
Teruhisa Hattori ◽  
Takamasa Takagi ◽  
...  

2011 ◽  
Vol 41 (11) ◽  
pp. 2187-2210 ◽  
Author(s):  
Timothy McGeehan ◽  
Wieslaw Maslowski

Abstract Freshwater exiting the Arctic Ocean through the Canadian Arctic Archipelago (CAA) has been shown to affect meridional overturning circulation and thereby the global climate system. However, because of constraints of spatial resolution in most global ocean models, neither the flow of low salinity water through the CAA to the Labrador Sea nor the eddy activity that may transport freshwater from the shelf to areas of open ocean convection can be directly simulated. To address these issues, this study uses a high-resolution ice–ocean model of the pan-Arctic region with a realistic CAA and forced with realistic atmospheric data. This model resolves conditions in the Arctic Ocean upstream of the Labrador Sea and is coupled to a thermodynamic–dynamic sea ice model that responds to the atmospheric forcing. The major shelf–basin exchange of liquid freshwater occurs south of Hamilton Bank, whereas the largest ice flux occurs in the northwest of the basin. Freshwater flux anomalies entering the Labrador Sea through Davis Strait do not immediately affect deep convection. Instead, eddies acting on shorter time scales can move freshwater to locations of active convection and halt the process. Convection is modulated by the position of the ice edge, highlighting the critical need for a coupled ice–ocean model. Finally, the size of eddies and the short duration of events demonstrate the need for high resolution, both spatial and temporal.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2752
Author(s):  
Jun Lee ◽  
Jungwoo Lee ◽  
Sang-Leen Yun ◽  
Seog-Ku Kim

We developed a three-dimensional unstructured grid coastal and estuarine circulation model, named the General Ocean Model (GOM). Combining the finite volume and finite difference methods, GOM achieved both the exact conservation and computational efficiency. The propagation term was implemented by a semi-implicit numerical scheme, the so-called θ scheme, and the time-explicit Eulerian–Lagrangian method was used to discretize the nonlinear advection term to remove the major limitation of the time step, which appears when solving shallow water equations, by the Courant–Friedrichs–Lewy stability condition. Because the GOM uses orthogonal unstructured computational grids, allowing both triangular and quadrilateral grids, considerable flexibility to resolve complex coastal boundaries is allowed without any transformation of governing equations. The GOM was successfully verified with five analytical solutions, and it was also validated when applied to the Texas coast, showing an overall skill value of 0.951. The verification results showed that the algorithm used in GOM was correctly coded, and it is efficient and robust.


Sign in / Sign up

Export Citation Format

Share Document