Sensitivity of Arctic sea ice to melt pond processes and atmospheric forcing: A model study

2021 ◽  
Vol 167 ◽  
pp. 101872
Author(s):  
Jean Sterlin ◽  
Thierry Fichefet ◽  
François Massonnet ◽  
Olivier Lecomte ◽  
Martin Vancoppenolle
2008 ◽  
Vol 112 (5) ◽  
pp. 2605-2614 ◽  
Author(s):  
Mark A. Tschudi ◽  
James A. Maslanik ◽  
Donald K. Perovich
Keyword(s):  
Sea Ice ◽  

2021 ◽  
pp. 301-324
Author(s):  
Avinash Kumar ◽  
Juhi Yadav ◽  
Rohit Srivastava ◽  
Rahul Mohan

2020 ◽  
Vol 12 (16) ◽  
pp. 2623 ◽  
Author(s):  
Marcel König ◽  
Gerit Birnbaum ◽  
Natascha Oppelt

Hyperspectral remote-sensing instruments on unmanned aerial vehicles (UAVs), aircraft and satellites offer new opportunities for sea ice observations. We present the first study using airborne hyperspectral imagery of Arctic sea ice and evaluate two atmospheric correction approaches (ATCOR-4 (Atmospheric and Topographic Correction version 4; v7.0.0) and empirical line calibration). We apply an existing, field data-based model to derive the depth of melt ponds, to airborne hyperspectral AisaEAGLE imagery and validate results with in situ measurements. ATCOR-4 results roughly match the shape of field spectra but overestimate reflectance resulting in high root-mean-square error (RMSE) (between 0.08 and 0.16). Noisy reflectance spectra may be attributed to the low flight altitude of 200 ft and Arctic atmospheric conditions. Empirical line calibration resulted in smooth, accurate spectra (RMSE < 0.05) that enabled the assessment of melt pond bathymetry. Measured and modeled pond bathymetry are highly correlated (r = 0.86) and accurate (RMSE = 4.04 cm), and the model explains a large portion of the variability (R2 = 0.74). We conclude that an accurate assessment of melt pond bathymetry using airborne hyperspectral data is possible subject to accurate atmospheric correction. Furthermore, we see the necessity to improve existing approaches with Arctic-specific atmospheric profiles and aerosol models and/or by using multiple reference targets on the ground.


2011 ◽  
Vol 52 (57) ◽  
pp. 185-191 ◽  
Author(s):  
Anja Rösel ◽  
Lars Kaleschke

AbstractMelt ponds are regularly observed on the surface of Arctic sea ice in late spring and summer. They strongly reduce the surface albedo and accelerate the decay of Actic sea ice. Until now, only a few studies have looked at the spatial extent of melt ponds on Arctic sea ice. Knowledge of the melt-pond distribution on the entire Arctic sea ice would provide a solid basis for the parameterization of melt ponds in existing sea-ice models. Due to the different spectral properties of snow, ice and water, a multispectral sensor such as Landsat 7 ETM+ is generally applicable for the analysis of distribution. an additional advantage of the ETM+ sensor is the very high spatial resolution (30 m). an algorithm based on a principal component analysis (PCA) of two spectral channels has been developed in order to determine the melt-pond fraction. PCA allows differentiation of melt ponds and other surface types such as snow, ice or water. Spectral bands 1 and 4 with central wavelengths at 480 and 770 nm, respectively, are used as they represent the differences in the spectral albedo of melt ponds. A Landsat 7 ETM+ scene from 19 July 2001 was analysed using PCA. the melt-pond fraction determined by the PCA method yields a different spatial distribution of the ponded areas from that developed by others. A MODIS subset from the same date and area is also analysed. the classification of MODIS data results in a higher melt-pond fraction than both Landsat classifications.


2014 ◽  
Vol 33 (12) ◽  
pp. 15-23
Author(s):  
Qinghua Yang ◽  
Jiping Liu ◽  
Zhanhai Zhang ◽  
Cuijuan Sui ◽  
Jianyong Xing ◽  
...  

2017 ◽  
Vol 122 (1) ◽  
pp. 413-440 ◽  
Author(s):  
Chris Polashenski ◽  
Kenneth M. Golden ◽  
Donald K. Perovich ◽  
Eric Skyllingstad ◽  
Alexandra Arnsten ◽  
...  

2019 ◽  
Author(s):  
Marcel König ◽  
Natascha Oppelt

Abstract. Melt ponds are key elements in the energy balance of Arctic sea ice. Observing their temporal evolution is crucial for understanding melt processes and predicting sea ice evolution. Remote sensing is the only technique that enables large-scale observations of Arctic sea ice. However, monitoring vertical melt pond evolution in this way is challenging because most of the optical signal reflected by a pond is defined by the scattering characteristics of the underlying ice. Without knowing the influence of melt water on the reflected signal, the water depth cannot be determined. To solve the problem, we simulated the way melt water changes the reflected spectra of bare ice. We developed a model based on the slope of the log-scaled remote sensing reflectance at 710 nm. We validated the model using 49 in situ melt pond spectra and corresponding depths from ponds on dark and bright ice. Retrieved pond depths are precise (RMSE = 2.81 cm) and highly correlated with in situ measurements (r = 0.89; p = 4.34e−17). The model further explains a large portion of the variation in pond depth (R2 = 0.74). Our results indicate that pond depth is retrievable from optical data under clear sky conditions. This technique is potentially transferrable to hyperspectral remote sensors on UAVs, aircraft and satellites.


1996 ◽  
Vol 15 (1) ◽  
pp. 43-52 ◽  
Author(s):  
Alexander P. Makshtas ◽  
Igor A. Podgorny
Keyword(s):  
Sea Ice ◽  

Sign in / Sign up

Export Citation Format

Share Document