melt pond
Recently Published Documents


TOTAL DOCUMENTS

141
(FIVE YEARS 52)

H-INDEX

24
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Ellen Buckley ◽  
Sinéad Farrell ◽  
Oliwia Baney ◽  
Kyle Duncan ◽  
Ute Herzfeld ◽  
...  

2021 ◽  
Author(s):  
Ellen Buckley ◽  
Sinéad Farrell ◽  
Oliwia Baney ◽  
Kyle Duncan ◽  
Ute Herzfeld ◽  
...  

2021 ◽  
Author(s):  
Alex West ◽  
Ed Blockley ◽  
Mat Collins

Abstract. Arctic sea ice is declining rapidly, but predictions of its future loss are made difficult by the large spread both in present-day and in future sea ice area and volume; hence, there is a need to better understand the drivers of model spread in sea ice state. Here we present a framework for understanding differences between modelled sea ice simulations based on attributing seasonal ice growth and melt differences. In the method presented, the net downward surface flux is treated as the principal driver of seasonal sea ice growth and melt. A system of simple models is used to estimate the pointwise effect of model differences in key Arctic climate variables on this surface flux, and hence on seasonal sea ice growth and melt. We compare three models with very different historical sea ice simulations: HadGEM2-ES, HadGEM3-GC3.1 and UKESM1.0. The largest driver of differences in ice growth / melt between these models is shown to be the ice area in summer (representing the surface albedo feedback) and the ice thickness distribution in winter (the thickness-growth feedback). Differences in snow and melt-pond cover during the early summer exert a smaller effect on the seasonal growth and melt, hence representing the drivers of model differences in both this and in the sea ice volume. In particular, the direct impacts on sea ice growth / melt of differing model parameterisations of snow area and of melt-ponds are shown to be small but non-negligible.


2021 ◽  
Vol 13 (22) ◽  
pp. 4674
Author(s):  
Yuqing Qin ◽  
Jie Su ◽  
Mingfeng Wang

The formation and distribution of melt ponds have an important influence on the Arctic climate. Therefore, it is necessary to obtain more accurate information on melt ponds on Arctic sea ice by remote sensing. The present large-scale melt pond products, especially the melt pond fraction (MPF), still require verification, and using very high resolution optical satellite remote sensing data is a good way to verify the large-scale retrieval of MPF products. Unlike most MPF algorithms using very high resolution data, the LinearPolar algorithm using Sentinel-2 data considers the albedo of melt ponds unfixed. In this paper, by selecting the best band combination, we applied this algorithm to Landsat 8 (L8) data. Moreover, Sentinel-2 data, as well as support vector machine (SVM) and iterative self-organizing data analysis technique (ISODATA) algorithms, are used as the comparison and verification data. The results show that the recognition accuracy of the LinearPolar algorithm for melt ponds is higher than that of previous algorithms. The overall accuracy and kappa coefficient results achieved by using the LinearPolar algorithm with L8 and Sentinel-2A (S2), the SVM algorithm, and the ISODATA algorithm are 95.38% and 0.88, 94.73% and 0.86, and 92.40%and 0.80, respectively, which are much higher than those of principal component analysis (PCA) and Markus algorithms. The mean MPF (10.0%) obtained from 80 cases from L8 data based on the LinearPolar algorithm is much closer to Sentinel-2 (10.9%) than the Markus (5.0%) and PCA algorithms (4.2%), with a mean MPF difference of only 0.9%, and the correlation coefficients of the two MPFs are as high as 0.95. The overall relative error of the LinearPolar algorithm is 53.5% and 46.4% lower than that of the Markus and PCA algorithms, respectively, and the root mean square error (RMSE) is 30.9% and 27.4% lower than that of the Markus and PCA algorithms, respectively. In the cases without obvious melt ponds, the relative error is reduced more than that of those with obvious melt ponds because the LinearPolar algorithm can identify 100% of dark melt ponds and relatively small melt ponds, and the latter contributes more to the reduction in the relative error of MPF retrieval. With a wider range and longer time series, the MPF from Landsat data are more efficient than those from Sentinel-2 for verifying large-scale MPF products or obtaining long-term monitoring of a fixed area.


Author(s):  
P. Anhaus ◽  
C. Katlein ◽  
M. Nicolaus ◽  
M. Hoppmann ◽  
C. Haas

2021 ◽  
Vol 15 (11) ◽  
pp. 5099-5114
Author(s):  
Rachel Diamond ◽  
Louise C. Sime ◽  
David Schroeder ◽  
Maria-Vittoria Guarino

Abstract. The Hadley Centre Global Environment Model version 3 (HadGEM3) is the first coupled climate model to simulate an ice-free Arctic during the Last Interglacial (LIG), 127 000 years ago. This simulation appears to yield accurate Arctic surface temperatures during the summer season. Here, we investigate the causes and impacts of this extreme simulated ice loss. We find that the summer ice melt was predominantly driven by thermodynamic processes: atmospheric and ocean circulation changes did not significantly contribute to the ice loss. We demonstrate these thermodynamic processes were significantly impacted by melt ponds, which formed on average 8 d earlier during the LIG than during the pre-industrial control (PI) simulation. This relatively small difference significantly changed the LIG surface energy balance and impacted the albedo feedback. Compared to the PI simulation: in mid-June, of the absorbed flux at the surface over ice-covered cells (sea-ice concentration > 0.15), ponds accounted for 45 %–50 %, open water 35 %–45 %, and bare ice and snow 5 %–10 %. We show that the simulated ice loss led to large Arctic sea surface salinity and temperature changes. The sea surface temperature and salinity signals we identify here provide a means to verify, in marine observations, if and when an ice-free Arctic occurred during the LIG. Strong LIG correlations between spring melt pond and summer ice area indicate that, as Arctic ice continues to thin in future, the spring melt pond area will likely become an increasingly reliable predictor of the September sea-ice area. Finally, we note that models with explicitly modelled melt ponds seem to simulate particularly low LIG sea-ice area. These results show that models with explicit (as opposed to parameterised) melt ponds can simulate very different sea-ice behaviour under forcings other than the present day. This is of concern for future projections of sea-ice loss.


2021 ◽  
Vol 167 ◽  
pp. 101872
Author(s):  
Jean Sterlin ◽  
Thierry Fichefet ◽  
François Massonnet ◽  
Olivier Lecomte ◽  
Martin Vancoppenolle

2021 ◽  
Author(s):  
Philipp Anhaus ◽  
Christian Katlein ◽  
Marcel Nicolaus ◽  
Mario Hoppmann ◽  
Christian Haas

2021 ◽  
Vol 13 (19) ◽  
pp. 3882
Author(s):  
Jiechen Zhao ◽  
Yining Yu ◽  
Jingjing Cheng ◽  
Honglin Guo ◽  
Chunhua Li ◽  
...  

As a long-term, near real-time, and widely used satellite derived product, the summer performance of the Special Sensor Microwave Imager/Sounder (SSMIS)-based sea ice concentration (SIC) is commonly doubted when extensive melt ponds exist on the ice surface. In this study, three SSMIS-based SIC products were assessed using ship-based SIC and melt pond fraction (MPF) observations from 60 Arctic cruises conducted by the Ice Watch Program and the Chinese Icebreaker Xuelong I/II. The results indicate that the product using the NASA Team (SSMIS-NT) algorithm and the product released by the Ocean and Sea Ice Satellite Application Facility (SSMIS-OS) underestimated the SIC by 15% and 7–9%, respectively, which mainly occurred in the high concentration rages, such as 80–100%, while the product using the Bootstrap (SSMIS-BT) algorithm overestimated the SIC by 3–4%, usually misestimating 80% < SIC < 100% as 100%. The MPF affected the SIC biases. For the high MPF case (e.g., 50%), the estimated biases for the three products increased to 20% (SSMIS-NT), 7% (SSMIS-BT), and 20% (SSMIS-OS) due to the influence of MPF. The relationship between the SIC biases and the MPF observations established in this study was demonstrated to greatly improve the accuracy of the 2D SIC distributions, which are useful references for model assimilation, algorithm improvement, and error analysis.


2021 ◽  
Author(s):  
Philipp Anhaus ◽  
Christian Katlein ◽  
Marcel Nicolaus ◽  
Mario Hoppmann ◽  
Christian Haas
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document